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Big Picture for this Talk



The Motivating Example

How do we differentiate the X and Y using persistent homology?
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A Broader Program: Enriched Topological Summaries

The Challenge: Persistent homology alone cannot distinguish these.

The Solution: Enriched topological summaries (ETS), such as decorated merge trees, knit

together connected component (π0) and homological information.

Data ETS TS Barcode
continuous discrete

The broader research program here is to

1. use ETS to study the inverse problem in persistence to “count” different data sets, and

2. equip ETS with (stable) metrics to provide improved data classification tools.
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Decorated Merge Trees in Action



TDA + Machine Learning: An Adversarial Example

Figure Credit: Tom Needham (FSU)
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Grouping Features by Components

Figure Credit: Tom Needham (FSU)
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Discrimination for Takens Embedding + Cycle Localization

Figure Credit: Tom Needham (FSU)

5



Models for Merge Trees



Basic Ideas

1. A persistence space is a functor F : (R,≤)→ Top t ≤ s  F (t)→ F (s).

2. A persistent set is a functor S : (R,≤)→ Set, e.g. S = π0 ◦ F .

3. A merge tree is a (constructible) persistent set where S(t) = {?} for t >> 0.
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DMTs as Sheaves



A Reminder

The decorated merge tree should serve as a minimal, stable signature that distinguishes these.
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The Sheaf-Theoretic Solution (v1 of DMTs)

The Leray Sheaves

To a map f : X → Y consider the assignment to each open set U ⊆ Y the vector space

Hn(f −1(U);k). The sheafification of this pre-sheaf is known as the nth Leray sheaf

associated to f , which we write as Fn.

Mf = Ef / ∼

Ef R

π̃fq

πf

Epigraph

quotient
map

Elder
map

Sublevel set persistent homology is just the study of the Leray sheaves of the map πf .

Sheaf version of DMT

Decorated Merge Trees are the Leray sheaves of the map q.
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DMTs as Persistence Modules



Basic Idea

Recall that Bubenik, de Silva and Scott introduced the following language circa 2013:

Definition

A generalized persistence module (GPM) is a functor F : (P,�)→ D

By equipping (P,�) with a one-parameter family of translations or, following Stefanou, the

structure of a flow, we can compare different generalized persistence modules.

Goal

Find a category D so that DMTs are GPMs with P = R.

10



Recollection of Basic Topology

A continuous map of locally connected spaces can be expressed as

f = tfi :
⊔

i∈π0(X )

Xi →
⊔

j∈π0(Y )

Yj

This then induces a map

⊕fi :
⊕
i

Hn(Xi )→
⊕
j

Hn(Yj)

Upshot

These are examples of objects + morphisms in pTopc and pVect, respectively
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Parameterized Objects and Morphisms

The disjoint union t and the coproduct ⊕ are actually examples of colimits of functors from a

discrete category, i.e. a category where the only morphisms are identity morphisms.

Parameterized Objects

Fix a category C. A parameterized object is a functor I from a set S ∈ Set, viewed as a

discrete category, to a category C, i.e. I : S → C.

Parameterized Morphisms

A parameterized morphism from I : S → C to J : T → C consists of a map of sets

m : S → T and a natural transformation α : I ⇒ J ◦m =: m∗J.
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The Category of Parameterized Objects

This allows us to define a new category, courtesy of Gabe Bainbridge.

Definition

Denote by pC the category of parameterized objects in C, whose objects are functors

I : I→ C for some set I ∈ Set and whose morphisms are natural transformations

α : I ⇒ J ◦m.

If C has coproducts, then pC participates in the following diagram of categories and functors

pC

Set C

coproductdom
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Refining a Topological Filtration

Now that we have a category, it is easy to define functors to it.

Lemma: Persistently Parameterized Space

Any persistent space of locally connected spaces F : (R,≤)→ Toplc has an associated

persistently parameterized space F̃ where F is naturally isomorphic to the composition of

functor cop ◦ F̃
(R,≤)

pTopc

Set Toplc

F̃

π0◦F̃ F

copdom

π0
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Refining Persistent Homology (DMTs v2)

Categorical Definition of Decorated Merge Trees

Composition of F̃ with the homology functor Hn : pTop→ pVect yields the categorical

decorated merge tree in degree n, written F̃n, making the diagram commute, up to natural

isomorphism.

(R,≤)

pVect

Set Vect

F̃n

π0◦F̃ Hn◦F

copdom
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Revisiting Our Example

The decorated merge tree should serve as a minimal, stable signature that distinguishes these.
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Non-Isomorphism in our Motivating Example

Our motivating example reduces to the consideration of these two objects in pVect:
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Remarks on the Categorical Definition

Pros:

• If F denotes the offset filtration of X and G denotes the offset filtration of Y , then we that

F̃n � G̃n even though Hn ◦ F ∼= Hn ◦ G .

• Jumping ahead and recalling that ε-interleavings give a notion of approximate

isomorphism, we can define interleavings of DMTs easily. Moreover,

Corollary

Merge Tree Interleaving Distance ≤ Decorated Merge Tree Interleaving Distance

Cons:

• Ease of theorems comes at the expense of abstraction.

• Not immediately obvious how barcodes actually “sit on top of” the merge tree.
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DMTs as a Barcode Transform



Poset-Theoretic Perspective

Associated to F : (R,≤)→ Top is an associated merge poset

MF :=
⋃
t∈R

π0(F (t))× {t}

([x1],r)

([x2],r)

([y1],s)

([y2],s)
([z],t)

r s t

Principal Up Set at ([x1],r)
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Restricting a Persistently Parameterized Space

Given any point p = ([x ], r) ∈MF , we can restrict F̃ : (R,≤)→ pTop to the up set Up to

obtain the persistent space from p, written F̃ |Up .

Decorated Merge Trees v3: The Barcode Transform

The assignment to each p ∈MF the barcode of the restricted persistent homology module

BC (F̃ |Up ) defines a map

BF :MF → Barcodes

This is our poset-theoretic decorated merge tree. Note that whenever ([x ], r) 4 ([y ], s) we

have that BF (q) = BF (p)|[s,∞).
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Two Versions of DMTs Compared (Not Unique!)
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Stability for DMTs



Warm-up to Interleavings

Definition

Given a functor F : (R,≤)→ C, we can define it’s ε-shift to be the functor F ε where

F ε(t) = F (t + ε), i.e. F ε peaks ε-time into the future of F .

Think of F ε as the ε-offset of F , just as we considered Xε to be the offset of a subset X ⊆ Rn.

Definition

Note that we always have a natural transformation from F to its shift.

ηεF : F ⇒ F ε where ηεF (t) : F (t)→ F (t + ε) is F (t ≤ t + ε)

You can interpret this as F always “includes” into F ε, just as X ⊆ Xε.

We now wish to reverse-engineer this analogy with the Hausdorff distance between two

subsets X and Y , where

dH(X ,Y ) := inf{ε | Y ⊆ Xε and X ⊆ Yε}.
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Interleavings

Definition

Two functors F ,G : (R,≤)→ C are ε-interleaved if there are natural transformations

ϕ : F ⇒ G ε and ψ : G ⇒ F ε such that

ψε ◦ ϕ = η2εF and ϕε ◦ ψ = η2εG .

The Interleaving Distance

Given two functors F ,G : (R,≤)→ C, we define their interleaving distance as

dI (F ,G ) = inf{ε > 0 | F and G are ε-interleaved}.

This defines an extended pseudo-metric on the category of functors Fun(R,C).
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Interleaving Distances

• For C = Vect this defines the interleaving distance between persistent homology modules

dI (cf. Chazal, Cohen-Steiner, Glisse, Guibas, & Oudot).

• For C = Match, the category of sets and partial bijections, this defines the bottleneck

distance dB on barcodes. (cf. Bauer& Lesnick).

• For C = Set, this defines the interleaving distance dMT for merge trees (cf. Morozov,

Beketayev & Weber).

• For C = pVect this defines the interleaving distance dDMT for decorated merge trees (C.

+ Hang, Mio, Needham & Okutan).
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Stability

Hausdorff Stability (CC-SGGO ’09)

As one can imagine, if X and Y are ε-close in the Hausdorff distance, then their persistent

homology modules of their off-set filtrations are ε-close.

L∞ Stability (ibid)

Moreover, if f and g are functions that are ε-close in the sup norm

||f − g ||∞ := sup{|f (x)− g(x)| | x ∈ X}

then the sublevel-set filtrations will be ε-interleaved and their persistent homology modules

will be ε-close.
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L∞ Stability and Bottleneck Distance (C-S, Edelsbrunner and Harer ’05)

Persistence Diagrams

Bottleneck Distance

Functions
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Decorated Bottleneck Distance

ε-matching of Barcode Decorated Merge Trees

Given two barcode DMTs

BF :MF → Barcodes and BG :MG → Barcodes

we define an ε-matching of BF and BG to consist of

• an ε-interleaving of the underlying merge trees MF and MG , along with

• an ε-matching of the barcodes BF (x) and BG (φ(x)) for every x ∈MF and an ε-matching

of the barcodes BG (y) and BF (ψ(y)) for every y ∈MG .

Decorated Bottleneck Distance

We define the decorated bottleneck distance to be

dDB(BF ,BG ) := inf{ε | BF and BG are ε-matched.}
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Distance for Functional Data

Interleaving of R-spaces (cf. Frosini, Landi & Memoli)

An ε-interleaving of R-spaces f : X → R and g : Y → R is a pair of continuous maps

Φ : X → Y and Ψ : Y → X along with homotopies HX : X × [0, 1]→ X and

HY : Y × [0, 1]→ Y connecting the identity maps idX and idY with Ψ ◦ Φ and Φ ◦Ψ,

respectively. We require further that the following four properties hold for Φ, Ψ, HX and HY :

1. Φ(X≤s) ⊆ Y≤s+ε for all s ∈ R
2. Ψ(Y≤s) ⊆ X≤s+ε for all s ∈ R
3. f ◦ HX (x , t) ≤ f (x) + 2ε for all x ∈ X and t ∈ [0, 1]

4. g ◦ HY (y , t) ≤ g(y) + 2ε for all y ∈ Y and t ∈ [0, 1]

Functional Interleaving Distance

The functional interleaving distance between R-spaces Xf := f : X → R and

Yg := g : Y → R is defined as δI (Xf ,Yg ) := inf {ε | Xf and Yg are ε-interleaved}.
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A Hierarchy of Distances

Main Theorem (C. + Hang, Mio, Needham, Okutan)

For R-spaces Xf := f : X → R and Yg := g : Y → R we have the following sequence of

bounds

dMT (Mf ,Mg ) ≤ dDB(BF̃n,BG̃n) ≤ dDMT (F̃n, G̃n) ≤ δI (Xf ,Yg )

N.B. There is no clear relationship between bottleneck and decorated bottleneck distance!
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Future Work

• Generalizations to Reeb graphs and Reeb spaces.

• Broader development of “Persistent Sheaf Theory” in this context.

• Incorporation of other metrics on sheaves, e.g. Wasserstein-p distances.

Work being carried out with the original authors and Florian Russold at TU Graz.
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Thank You!
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