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The 5-Minute Overview Background & Motivation

Trees for Biology
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Fig. 1. Dendrogram drawn based on the matrix of genetic distances among 15 zymodemes of Trypanosoma cruzt
using UPGMA. The figures on branches indicate the number of times that the branch was observed in 1000
bootstraps. Bootstrap values below 600 are not given. Abbreviations: B, Brazil; Ch, Chile; Co, Colombia; E,
Ecuador; G, Guatemala; M, Mexico; Pa, Paraguay; Pe, Peru.
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The 5-Minute Overview Background & Motivation

Trees for Scalar Data
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The 5-Minute Overview Metrics on Merge Trees

Morozov, Beketayev, and Weber introduced the interleaving distance d; on merge trees [4].
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The 5-Minute Overview Metrics on Merge Trees
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N.B. d;(M,N) =d;(Q,N) = 3, but intuitively @ is “closer” to N.
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The 5-Minute Overview Metrics on Merge Trees

Cophenetic vectors

m Our vector summaries are subtly different from cophenetic vectors, i.e. the LCA matrix [2,
5, 3], as the length of our vectors is 2n — 1 versus ,,Cy = O(n?).

m In particular, the p-cophenetic distance is not Lipschitz stable for p # oc.
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The 5-Minute Overview Instabilities
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Here ||f — g|l1 = 2, while £*-cophenetic distance is 3.
Instead, we mimic a construction by Bjerkevik and Lesnick [1].
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The p-Presentation Distance on Merge Trees

Merge Trees as Persistent Sets

A merge tree is a functor M : R — Set that is
m constructible, i.e. 37 :={sp < s1 <--- < s,} CR, such that

(i) M(s) =0 for all s < sg, and
(i) M(s <t) is an isomorphism whenever s,t € [s;, s;+1), and also for s,t € [s,, 00).

m and where |M(t)| = 1 for t sufficiently large.
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The p-Presentation Distance on Merge Trees

Building Blocks for Merge Trees

A strand is a merge tree F; : R — Set, for s € R, defined by

Fu(t) == {(Z) ?ft<s,
{x} ift>s,

with the structure maps all inclusions. We call s birth time of the branch F

F

~
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The p-Presentation Distance on Merge Trees

Example Presentation of a Merge Tree

Any merge tree M can be constructed via gluing strands pairwise together.
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The p-Presentation Distance on Merge Trees

Presentation of a Merge Tree

A presentation of a merge tree M consists of
m generators G;'s and relations R;'s that are strands;

m together with pairs of underlying merge functions f;, g; : R; — L;G; that choose explicit
strands for merging.
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The p-Presentation Distance on Merge Trees

Presentation Matrix and Label Vector

To a presentation Py; we have a presentation matrix where

m the i-th row corresponds to the i-th generator G,
labelled by the birth time of G;; and

m the j-th column corresponds to the j-th relation R;,
labelled by the birth time of R;.

m The (4,7)-entry is 1 if G; is in the image of R; (under f or g) and O otherwise.

The label vector L(Pys) of a k x [ presentation matrix is the (k + [)-vector where
m the first k entries are the row labels, i.e. heights of leaf nodes, and

m the last [ entries are column labels, i.e. the heights of internal nodes.
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The p-Presentation Distance on Merge Trees
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The p-Presentation Distance on Merge Trees

Compatible Presentations

Two presentations Py;, Py are compatible if their presentation matrices have the same
underlying matrix, after forgetting row and column labels.

Lemma

Every pair of merge trees M and N, have compatible presentations Py; and Py .

Definition

Given p € [1, 00|, the p-presentation semi-distance between merge trees M and N is

ci?(M, N) = inf{|[L(Pan) — L(Pn)||, : Pm and Py are compatible. }
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The p-Presentation Distance on Merge Trees
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The p-Presentation Distance on Merge Trees

p-Presentation distance

We see a?? does not satisfy the triangle inequality. Fortunately there is a universal fix.

The p-presentation distance between M and N is

n—1
df(M,N) :=inf > d}(Qs, Qitr),
i=0
where we infimize over all finite sequences of merge trees M = Qo,...,Q, = N.

Theorem (Cardona, C., Lam, Lesnick '21)

m dY° =dj, i.e., the co-presentation distance equals the interleaving distance.

m Forp € (1,00, d7 is a pseudometric.
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Stability and Universality

Wasserstein Stability

We extend a lower bound on the interleaving distance due to Morozov et al.
Proposition (CCLL'21)
For p € [1, 00| and merge trees M, N :

&5, (B(M), B(N)) < d5(M, N).

Here d¥, the denotes p-Wasserstein distance between barcodes.
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Stability and Universality

Monotone Cellular Functions

Let X be a finite CW-complex.
m We say f: X — R is monotone if for any face 7 of o, one has f(7) < f(o).
m We can define || f|, by identifying f with an element of RICNCOI

Theorem (Skraba and Turner, 20')

Let f,g: X — R be monotone cellular functions. Then

&y (B(f), B(9)) < I - gl

Here B(f) is the persistence barcode for the sublevel set filtration of f.
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Stability and Universality

(P-stability & Universality

We provide an analogue of the interleaving stability for p-presentation distances.

Theorem (¢P-Stability, CCLL'21)

For any monotone cellular functions f,qg : X — R.

dy (Mg, My) < ||f = gllp,

Here M = mo o ST(f).

Theorem (Universality, CCLL'21)

. . - . e p
If d is any distance on merge trees satisfying the above stability property, then d < d.
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Stability and Universality

Final Thoughts

(i) The approach of Bjerkevik and Lesnick seems to generalize to a much broader class of
objects. Anything with a notion of presentation where generators and relations have
gradings in a metric space should work.

(i) However, these metrics feel very complex; NP-most likely.

(iii) Geometry and stratification theory should guide when the infimum—when passing from
the semi-distance to the actual distance—is actually obtained.

23/25



Stability and Universality

Final Thoughts

(i) The approach of Bjerkevik and Lesnick seems to generalize to a much broader class of
objects. Anything with a notion of presentation where generators and relations have
gradings in a metric space should work.

(i) However, these metrics feel very complex; NP-most likely.

(iii) Geometry and stratification theory should guide when the infimum—when passing from
the semi-distance to the actual distance—is actually obtained.

Thank you for your attention!
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