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Plan for the Talk

This talk will focus on four case studies of (co)sheaves in TDA.

Two examples in the small:

1. Persistent Homology

2. Decorated Merge Trees

And two examples in the large:

3. The Moduli Space of Merge Trees

4. The Persistent Homology Transform Sheaf
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Formalizing Persistent Homology



Point Cloud and Sub-level Set Filtrations
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Traditional Persistence

Mantra for Traditional Persistence

Study inclusions from“lower” to “higher” parameters via functoriality.
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The “Algebraic Geometry” of TDA

TDA studies maps to metric spaces f : X → S by algebratizing f −1(s).

R

R !�

# R

5



Challenges of Level Set Persistence

How to organize the homology of the fibers f −1(s) for a general map f : X → S?

f

Bott’s Morse function

cusp

foldfold

Whitney’s Cusp and Folds
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Challenges of Time-Evolving Persistence

What if we wanted to study a time-evolving point cloud or network?

C(t0) C(t1) C(t2) C(t3)

𝜋0C(t0) 𝜋0C(t1) 𝜋0C(t2) 𝜋0C(t3)
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The Answer

• Sheaves and Cosheaves provide a unifying language for:

• Merge Trees ↔ Coshv(RAlex; Set) and Reeb graphs ↔ Coshv(REucl; Set)

• Sublevel Set Persistence ↔ Shv(RAlex)

• Level Set Persistence ↔ Shv(REucl)

• Time-varying Persistence ↔ Shv(REucl × RAlex)

• (Co)Sheaves serve as a calculus of TDA in the sense that

• there is an existing toolbox of results and theory, where

• one can write down back-of-the-envelope calculations, and

• there are computable discrete models called cellular (co)sheaves.
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Cellular Sheaves and Cosheaves

Definition (MacPherson, Shepard, et al)

Let X be a cell complex and D a category, e.g. Set or Vect.

A cellular sheaf F assigns to every

• cell σ ⊆ X an object F (σ), and to every

• pair σ ⊆ τ , written σ ≤ τ , a morphism F (σ)→ F (τ), such that

whenever σ ≤ γ ≤ τ , the morphism F (σ)→ F (τ) is equal to the composition

F (σ)→ F (γ)→ F (τ).

In other words, a cellular sheaf is just a functor F : Cell(X )→ D. We can turn

arrows around to define a cellular cosheaf F̂ : Cell(X )op → D.
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“Continuous” Sheaves and Cosheaves

Pre-Cosheaf and Cosheaf

Let X be a topological space and D a category, e.g. Set or Vect.

A pre-cosheaf F

• assigns to every open set U ⊆ X an object F (U)

• assigns to every pair U ⊆ V a morphism F (U)→ F (V )

If the object F (U) can be determined as a colimit of objects assigned to elements of

any cover {Ui} of U, then F is a cosheaf.

Pre-Sheaves and Sheaves

By turning around the arrows, so that F restricts from larger open sets to smaller

ones, one obtains the notion of a pre-sheaf and sheaf.
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Fundamental Example I: Reeb Cosheaf

Given a map f : Y → X , the Reeb cosheaf, which is the fundamental cosheaf,

Rf : U  π0(f −1(U))

tracks components and plays the same role as the sheaf of sections does in sheaf theory.

f f
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Fundamental Example II: Leray Sheaves

To a map f : Y → X the Leray sheaf in degree n is the sheafification of the pre-sheaf

F n : U  Hn(f −1(U);k),

written as Fn or Rnf∗kY ; the nth right derived pushforward of the constant sheaf.

f

f-1(s) f-1(t)

s t

f-1(U)

U

f-1(s) f-1(t)f-1(U)

Space Level

Cohomology Level

k2 k2k2

k1 k2k1

Leray sheaf in deg 1

Leray sheaf in deg 0

Critical fibers have quasi-isomorphic neighborhoods
that include nearby non-critical fibers

≈

≈

≈
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MacPherson’s Entrance Path Category

Let X be stratified, i.e. partitioned into manifolds called strata. An entrance path is a

path that only leaves a stratum by entering a lower dimensional one. Two entrance

paths are equivalent if they are homotopic, rel endpoints, through entrance paths.

The entrance path category Ent(X ) has points of X for objects and equivalence

classes of entrance paths for morphisms.

Entrance Path
NOT 

an Entrance Path
Equivalent

Entrance Paths
Equivalent

Entrance Path
Category

For cell complexes the entrance path category is equivalent to the face relation poset. 13



Classification of Constructible Cosheaves

Cosheaf F : Open(X )→ D is constructible if whenever U ⊆ V are basic opens

associated to the same stratum, the morphism F (U)→ F (V ) is invertible.

Theorem (w/ Amit Patel)

Coshvc(X ; D) ' [Ent(X ); D]

Not a 
Basic Open

Two Basic Opens
associated to
same stratum

Equivalence
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Constructible Cosheaves are Finite Descriptors

Corollary

If X = R is stratified into finitely many pieces, the entrance path category is

equivalent to

(−∞, t1)→ {t1} ← · · · → {tn} ← (tn,∞)

and thus the study of constructible cosheaves is equivalent to the study of zig-zag

diagrams:

F (−∞, t1)→ F (t1)← · · · → F (tn)← F (tn,∞)

For D = Set, this says constructible cosheaves are equivalent to Reeb graphs.

For D = Vect, this says that constructible cosheaves are equivalent to

representations of an A2n+1-type quiver, which has a barcode decomposition.
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Bott’s Torus Revisited

Leray cosheaves are the canonical zig-zag modules, adapted to the stratification by

critical values.

F1

F0

0 k k2 k2 k2 k 0

k k k k2 k k k

Level Set Barcodes
have interesting

endpoints!

Related by Duality
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Whitney’s Cusp Revisited

k2 k2

k3

k

k

1 0 0
0 1 1

1 1 0
0 0 1

1 1 1 1

1
0

0
1

v1

v2

v3

Stratified Map

Associated 
Entrance Path

Category

Algebraic Summary:
Constructible Cosheaf
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“Unbreakable Summands” = Indecomposables

k2 k2

k3

k

k

1 0 0
0 1 1

1 1 0
0 0 1

1 1 1 1

1
0

0
1

k2 k2

k3

k

k

1 0 0
0 1 0

1 0 0
0 0 1

1 0 1 0

1
0

1
0

k k

k

k

k

k 0

k

k

0

0 k

k

k

0

⨁ ⨁
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Higher-Dimensional Barcodes?

⨁ ⨁

PROBLEM: Not every constructible cosheaf decomposes “nicely”.

SOLUTION: Abandon All Indecomposables, Ye Who Enter Here

One should look at “stable” invariants or generalized rank invariants. Consider their

Möbius Inversions à la MacPherson and Patel; Gulen and McCleary.
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Decorated Merge Trees



The Challenge

We want to distinguish the offset filtrations of X and Y using a minimal data structure.

2L 2LR R RRX Y

Xs Ys

Xt Yt

H0 H1

R

L
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The Cartoon Solution

A decorated merge tree should distinguishes these.

X

Y

2L

2L

R R

RR

DMT for X

DMT for Y

L

L

R

R

versus
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The Sheaf-Theoretic Solution

Sublevel set persistent homology is just the study of the Leray sheaves of the map πf .

(Concrete) Decorated Merge Trees are defined by the Leray sheaves of the map q.

Mf = Ef / ∼

Ef R

π̃fq

πf

Epigraph

quotient
map

Elder
map
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Point Cloud Example

Figure Credit: Tom Needham (FSU)
23



Cycle Localization

Our DMT algorithm provides cycle localization for free!

Figure Credit: Tom Needham (FSU)
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Cycle Localization in Image Data

Figure Credit: Tom Needham (FSU)
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Discrimination for Takens Embedding

Figure Credit: Tom Needham (FSU)
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Restricting the Concrete DMT

In practice, we don’t work with F :Mf → Vect directly.

([x1],r)

([x2],r)

([y1],s)

([y2],s)
([z],t)

r s t

Principal Up Set at ([x1],r)
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The Barcode DMT

Barcode Decorated Merge Tree

Associated to Fn :MF → Vect, the barcode DMT assigns to each

p = ([x ], r) ∈MF the barcode of the restricted Leray (co)sheaf, i.e. Fn|Up . This

defines

BFn :MF → Barcodes.
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The Barcode Transform is Not Injective

thin tree interval 
indecomposable

v

w

Pushforward
Barcode to ℝ

Barcodes “viewed”
from v and w

v

w

F1

BF1(v)
BF1(w)

⨁ ⨁

G1

v

w

Pushforward
Barcode to ℝ

Barcodes “viewed”
from v and w

v

w

BG1(v)
BG1(w)
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Three Approaches to DMTs

Two perspectives on the Leray (co)sheaf:

(Concrete DMT) Fn :Mf → Vect ⇔ F̃n : R→ pVect (Categorical DMT)

In practice we use the

(Barcode DMT) BFn :Mf → Barcodes,

https://github.com/trneedham/Decorated-Merge-Trees

30

https://github.com/trneedham/Decorated-Merge-Trees


Some Comments

• There is an obvious generalization to Reeb graphs and decorated Mapper graphs.

• Also easy to prove convergence results between these.

• Tractable invariants from DRGs is a challenge.

Upshot: Sheaves on graphs are interesting objects of study!
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Plug: Graph Neural Nets as Cellular Sheaves

Figure Credit: Bodnar, Bronstein, di Giovanni, et al

Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs 32



Sheaf Theory in The Large



Bird’s Eye Perspective

We have considered the TDA pipeline by studying individual inputs and outputs.

Most of these steps can be summarized using sheaf theory.

DATA Enriched TS TS Barcode/PD
continuous fiber discrete fiber1discrete fiber2

Counting fiber1
Informs creation 

of ETS
Counting Merge Trees & Reeb Graphs

We now recurse and study the TDA pipeline as a map, algebratizing it accordingly.
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Open Problem! (cf. Jordan deSha’s thesis)

R1

R2

R3

R4

B
34



From Trees to Barcodes



The Realization Problem for Merge Trees

Birth Axis

Death Axis

This point represents
the half-open interval
[b,infty)

b

Merge Tree
that

“Realizes B”
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The Realization Problem for Merge Trees

Birth Axis

Death Axis

Merge Tree
that

“Realizes B”

b0

d1

b1

b0

b1
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The Realization Problem for Merge Trees

Birth Axis

Death Axis

2 Merge Trees
realize B.

Here is MT1

b0

d1

b1

b0

b1 b2

d2

b2
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The Realization Problem for Merge Trees

Birth Axis

Death Axis

2 Merge Trees
realize B.

Here is MT2

b0

d1

b1

b0

b1 b2

d2

b2
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Change of Birth Order

Birth Axis

Death Axis

1 Merge Tree
Realizes B

b0

d1

b1

b0

b1b2

d2

b2
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Possible Realization?

Is this a Realization
of B?

Birth Axis

Death Axis

b0

d1

b1

b0

b1b2

d2

b2
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Elder Rule

NO!ELDER RULE SAYS…

Birth Axis

Death Axis

b0

d1

b1

b0

b1b2

d2

b2
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Enumerating the Fiber of the Elder Map

Theorem (C. ’17; Garin, Hess, Kanari ’20)

Fix a barcode B where every endpoint is distinct:

B = {[b0,∞); [b1, d1); . . . ; [bn, dn)}

Further, we assume I0 = [b0,∞) and Ij := [bj , dj) satisfy

• (Containment) Ij ⊂ I0 for all j ≥ 1 and

• (Increasing Birth Times) b1 < b2 < · · · < bn.

Set µB(Ij) = #{k < j | dj < dk}. The number of merge trees realizing B is

TRN(B) := R(B) :=
n∏

j=1

µB(Ij)

! = 1
! = 1

! = 2
! = 1
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Significance: Stratified Covering Spaces

Containment Poset

The barcode B = {Ij} forms a poset, ordered by containment of intervals.

The space of persistence diagrams/barcodes is stratified by the containment poset.

The Elder Map defines a stratified covering space or a Set-valued constructible cosheaf

over barcode space. The number of sheets over each top-dimensional stratum is R(B).
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Inversion Vectors

Adélie Garin, Kathryn Hess, and Lida Kanari observed that generic persistence

diagrams can be viewed as permutations, i.e. elements of the symmetric group.

id (23) (12) (123)

(0,0,0) (0,0,1) (0,1,0) (0,0,2)

(132)

(0,1,1)

(13)

(0,1,2)

permutation

left inversion
vector

number of 
inversions

0 1 1 2 2 3

Observation by GHK + C. + Brendan Mallery and Jordan DeSha

Let σ be the permutation type of a generic B and let `(σ) denote the left-inversion

vector of σ, then R(B) =
∏n

i=1(`i (B) + 1)
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Tree Realization Number is Bruhat Order Preserving

Lemma (CDGHKM ’21)

If σ, σ′ ∈ Sn are such that σ < σ′ in the (left) Bruhat order, then R(σ) < R(σ′).

(12) ∗ − (23) ∗ −

(23) ∗ − (12) ∗ −

(12) ∗ − (23) ∗ −

id or [123]

(12) or [213] (23) or [132]

(132) or [312](123) or [231]

(13) or [321]
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TRN on the Cayley Graph

Figure Credit: Adélie Garin (EPFL)
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Counting Combinatorial Merge Trees

1. Top 2n-dimensional strata of barcode space 7→ Sn, so there are n! many.

2. Merge trees form a (stratified) covering space of barcode space, so the sum

∑

σ∈Sn
R(Bσ)

counts top 2n-dimensional strata.

3. Both the strata of barcode space and merge tree space are convex.
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n

𝑛 + 1
2

𝑛
2

𝑛 − 1
2

=	!! !#$ !%^!
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Maximal Chains in the Lattice of Partitions

Theorem (CDGHKM ’21)

The Elder Map stratifies MT Space so that top-dimensional strata are in bijection

with maximal chains in the lattice of partitions. In summary,

∑

σ∈Sn
R(Bσ) =

∑

σ∈Sn

n∏

i=1

(li (σ) + 1) =
(n + 1)!n!

2n
.

cf. BHV space, where orthants are counted by (2n − 1)!!, where n = #leaves− 1

A Lattice-Theoretic Perspective on the Persistence Map by Mallery, Garin, C.

53



BHV Trees

For 4 leaves, there are 15 BHV topologies.

Figure Credit: Wikipedia
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18 MT Trees (Figure Credit: Adélie Garin)
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Remarks on MT Space versus BHV Space

Merge Tree space is very different from BHV space.

• Points in MT Space correspond to isomorphism classes of merge trees.

• Generically we can label leaf nodes by birth time, but this is not continuous.

• Moreover, a given orthant of BHV space (split topology type) does not have a

uniquely associated permutation type of barcode, but we can bound this

difference precisely. See Prop 3.23 of https://arxiv.org/abs/2107.11212

• Understanding the stratified space structure is critical for doing good statistics.
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The Big PHT Sheaf



Persistent Homology Transform

Copyright held by Katharine Turner, Sayan Mukherjee, Doug Boyer
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PHT for Shape Discrimination

The PHT is sufficient for describing shapes.

Theorem (TMB ’14)

If K ,K ′ ⊆ R3 are two PL-embedded simplicial complexes and PHT(K ) = PHT(K ′),

then K = K ′.

This was generalized by using Schapira’s Inversion Theorem for the Radon transform.

Theorem (CMT ’18/21; Ghrist, Levanger, Mai ’18)

If M,M ′ ⊆ Rd are two constructible subsets and PHT(M) = PHT(M ′), then

M = M ′.

58



Sheaf Interpretation

Definition

Given M ⊆ Rd we have ZM := {(x , v , t) ∈ M × Sd−1 × R | x · v ≤ t}.
The derived PHT of M is the Leray sheaf of the map πM : ZM → Sd−1 × R.

By restricting PHT(M) := RπM∗kZM
to {v} × R we obtain a sheaf on a totally

ordered subset and hence barcodes in each degree.
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A Pre-Sheaf of PHT Sheaves

Notice that if we include a subset A ↪→ M then we have an associated inclusion

ZA ↪→ ZM

Restricting cohomology of sublevel sets in M to those in A induces a sheaf morphism

PHT(M)⇒ PHT(A)

Lemma (Arya, C., Mukherjee ’21)

The following assignment is a pre-sheaf

F : CS(Rd)op → Db(Shv(Sd−1 × R)) M 7→ PHT(M)

where PHT(M) is the derived sheaf version of the PHT.
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PHT Sheaf Example from Shreya Arya (Duke)
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PHT Sheaf Example from Shreya Arya (Duke)
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PHT Sheaf Example from Shreya Arya (Duke)
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PHT Sheaf Example from Shreya Arya (Duke)
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PHT for PL shapes

• For a convex subset A ⊆ Rd , all of the PHT is concentrated in degree 0.

• If we view a polyhedron M ⊆ Rd as glued together convex shapes, then we can

recover PHT(M) completely in terms of PHT0(Mi ), where {Mi} is a locally

finite convex cover of M.

Theorem (ACM ’22)

For the simplicial complex M ∈ Rd and cover V = {Mi}i∈I of M, PHTn(M) is the

n-th cohomology of the following complex of sheaves:

0→ ⊕i∈IPHT0(Mi )→ ⊕i<jPHT0(Mi ∩Mj)→ · · ·

where the · · · represents the higher intersection terms.
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Cech Descent for the PHT

Definition

A pre-sheaf F : Cop → Db(A) is a homotopy sheaf (satisfies Čech descent) if for

every object U ∈ C and cover U = {Ui → U} the following map is a quasi-iso:

F(U)
'−→ holim

[∏

i

F(Ui )⇒
∏

i ,j

F(Uij) · · ·
]

Theorem (ACM ’22)

PHT is a homotopy sheaf on the o-minimal site of constructible sets CS(Rd)
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A Sheaf-Theoretic Construction of Shape Space

2 SHREYA ARYA, JUSTIN CURRY, AND SAYAN MUKHERJEE

(a) Kendall’s shape space. (b) Grenander’s shape space. (c) PHT-based shape space.

Figure 1. Shape spaces

(2) Each shape—that is, each point M 2 CS(Rd)—is equivalently regarded via its per-
sistent homology transform PHT(M), which is an object in the derived category of
sheaves Db(Shv(Sd�1 ⇥ R)).

With these observations in place, our main result can be summarized as follows.

Theorem 1.1. The following assignment is a homotopy sheaf:

F : CS(Rd)op ! Db(Shv(Sd�1 ⇥ R)) M 7! PHT(M).

Intuitively, this result allows us to interpolate between shapes in a continuous way via their
persistent homology transforms; continuity is mediated via the Grothendieck topology on
CS(Rd). More precisely, our main result establishes Čech descent for the persistent homology
transform, which is a generalization of the sheaf axiom that holds for higher degrees of
homology. In its most concrete form, our main result implies the following:

Theorem 1.2 (Nerve Lemma for the PHT). If M 2 CS(Rd) is a polyhedron, i.e. it can
be written as a finite union of closed linear simplices M = {�i}i2⇤, then the persistent
homology transform in degree n, written PHTn(M), is isomorphic to the n-th cohomology of
the following complex of sheaves:

0!
M

I⇢⇤ s.t. |I|=1

PHT0(MI)!
M

J⇢⇤ s.t. |J |=2

PHT0(MJ)! · · ·

Here MI with |I| = k denotes the disjoint union of depth k intersections of closed simplices
appearing in the cover M.

It should be noted that positive scalar curvature of a constructible set M (when defined)
obstructs Theorem 1.2 from being directly applied, as cover elements may necessarily have
higher homology when viewed in a direction normal to that point. See Figure 2 for an
example.

As such it is desirable to have an approximation result that is provably stable under the
persistent homology transform and allows us to work degree-0 homology along. Our last
result does exactly this:

Theorem 1.3 (Approximation of the PHT). For any compact submanifold M and any ✏ > 0
we can construct a polyhedron N so that with high probability PHT(M) and PHT(N) are
✏-close. PHT(N) can then be computed using Theorem 1.2.
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Thank You!
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