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Plan for the Talk

This talk will focus on four case studies of (co)sheaves in TDA.

Two examples in the small:

1. Persistent Homology

2. Decorated Merge Trees

And two examples in the large:

3. The Moduli Space of Merge Trees

4. The Persistent Homology Transform Sheaf
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Formalizing Persistent Homology



The “Algebraic Geometry” of TDA

TDA studies maps to metric spaces f : X → S by algebratizing f −1(s).

R

R !�

# R
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Point Cloud and Sub-level Set Filtrations
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The Beauty of Functoriality

Persistent Betti numbers βi (t) := dimHi (F (t)) don’t track features correctly!
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Summary of Multi-Parameter Persistence

Mantra for Traditional Persistence

Study inclusions from“lower” to “higher” parameters via functoriality.

Implement, refine and apply.
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Challenges of Level Set Persistence

How to organize the homology of the fibers f −1(s) for a general map f : X → S?

f

Bott’s Morse function

cusp

foldfold

Whitney’s Cusp and Folds
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Challenges of Time-Evolving Persistence

What if we wanted to study a time-evolving point cloud or network?

C(t0) C(t1) C(t2) C(t3)

𝜋0C(t0) 𝜋0C(t1) 𝜋0C(t2) 𝜋0C(t3)
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The Answer

• Sheaves and Cosheaves provide a unifying language for:

• Merge Trees ↔ Coshv(RAlex; Set) and Reeb graphs ↔ Coshv(REucl; Set)

• Sublevel Set Persistence ↔ Shv(RAlex)

• Level Set Persistence ↔ Shv(REucl)

• Time-varying Persistence ↔ Shv(REucl × RAlex)

• Cosheaves serve as a calculus of TDA in the sense that

• there is an existing toolbox of results and theory, and

• one can write down analytical models and use sheaves to perform by-hand

calculations.
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Enter the Cosheaf

Pre-Cosheaf and Cosheaf

Let X be a topological space and D a category, e.g. Set or Vect A pre-cosheaf F

• assigns to every open set U ⊆ X an object F (U)

• assigns to every pair U ⊆ V a morphism F (U)→ F (V )

If the object F (U) can be determined as a colimit of objects assigned to elements of

any cover {Ui} of U, then F is a cosheaf.

Pre-Sheaves and Sheaves

By turning around the arrows, so that F restricts from larger open sets to smaller

ones, one obtains the notion of a pre-sheaf and sheaf.
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Fundamental Example I: Reeb Cosheaf

Given a map f : Y → X , the Reeb cosheaf, which is the fundamental cosheaf,

Rf : U  π0(f −1(U))

tracks components and plays the same role as the sheaf of sections does in sheaf theory.

f f
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Fundamental Example II: Leray Sheaves

To a map f : X → Y the Leray sheaf in degree n is the sheafification of the pre-sheaf

F n : U  Hn(f −1(U);k),

written as Fn or Rnf∗kX ; the nth right derived pushforward of the constant sheaf.

f

f-1(s) f-1(t)

s t

f-1(U)

U

f-1(s) f-1(t)f-1(U)

Space Level

Cohomology Level

k2 k2k2

k1 k2k1

Leray sheaf in deg 1

Leray sheaf in deg 0

Critical fibers have quasi-isomorphic neighborhoods
that include nearby non-critical fibers

≈

≈

≈

12



MacPherson’s Entrance Path Category

Let X be stratified, i.e. partitioned into manifolds called strata. An entrance path is a

path that only leaves a stratum by entering a lower dimensional one. Two entrance

paths are equivalent if they are homotopic, rel endpoints, through entrance paths.

The entrance path category Ent(X ) has points of X for objects and equivalence

classes of entrance paths for morphisms.

Entrance Path
NOT 

an Entrance Path
Equivalent

Entrance Paths
Equivalent

Entrance Path
Category

For cell complexes the entrance path category is equivalent to the face relation poset. 13



Classification of Constructible Cosheaves

Cosheaf F : Open(X )→ D is constructible if whenever U ⊆ V are basic opens

associated to the same stratum, the morphism F (U)→ F (V ) is invertible.

Theorem (w/ Amit Patel)

Coshvc(X ; D) ' [Ent(X ); D]

Not a 
Basic Open

Two Basic Opens
associated to
same stratum

Equivalence
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Constructible Cosheaves are Finite Descriptors

Corollary

If X = R is stratified into finitely many pieces, the entrance path category is

equivalent to

(−∞, t1)→ {t1} ← · · · → {tn} ← (tn,∞)

and thus the study of constructible cosheaves is equivalent to the study of zig-zag

diagrams:

F (−∞, t1)→ F (t1)← · · · → F (tn)← F (tn,∞)

For D = Set, this says constructible cosheaves are equivalent to Reeb graphs.

For D = Vect, this says that constructible cosheaves are equivalent to

representations of an A2n+1-type quiver, which has a barcode decomposition.
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Bott’s Torus Revisited

Leray cosheaves are the canonical zig-zag modules, adapted to the stratification by

critical values.

F1

F0

0 k k2 k2 k2 k 0

k k k k2 k k k

Level Set Barcodes
have interesting

endpoints!

Related by Duality
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Whitney’s Cusp Revisited

k2 k2

k3

k

k

1 0 0
0 1 1

1 1 0
0 0 1

1 1 1 1

1
0

0
1

v1

v2

v3

Stratified Map

Associated 
Entrance Path

Category

Algebraic Summary:
Constructible Cosheaf
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“Unbreakable Summands” = Indecomposables

k2 k2

k3

k

k

1 0 0
0 1 1

1 1 0
0 0 1

1 1 1 1

1
0

0
1

k2 k2

k3

k

k

1 0 0
0 1 0

1 0 0
0 0 1

1 0 1 0

1
0

1
0

k k

k

k

k

k 0

k

k

0

0 k

k

k

0

⨁ ⨁
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Higher-Dimensional Barcodes?

⨁ ⨁

PROBLEM: Not every constructible cosheaf decomposes “nicely”.

SOLUTION: Abandon All Indecomposables, Ye Who Enter Here

One should look at “stable” invariants or generalized rank invariants. Consider their

Möbius Inversions à la MacPherson and Patel; Gulen and McCleary.
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Decorated Merge Trees



The Challenge

We want to distinguish the offset filtrations of X and Y using a minimal data structure.

2L 2LR R RRX Y

Xs Ys

Xt Yt

H0 H1

R

L
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The Cartoon Solution

A decorated merge tree should distinguishes these.

X

Y

2L

2L

R R

RR

DMT for X

DMT for Y

L

L

R

R

versus
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The Sheaf-Theoretic Solution

Sublevel set persistent homology is just the study of the Leray sheaves of the map πf .

(Concrete) Decorated Merge Trees are defined by the Leray sheaves of the map q.

Mf = Ef / ∼

Ef R

π̃fq

πf

Epigraph

quotient
map

Elder
map

Problem

Different f have different Mf . It is hard to compare sheaves on different base spaces.
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Outline: Three Approaches to DMTs

We can define “enriched” topological summaries by changing the data category D.

Replace cosheaves of vector spaces with cosheaves of parameterized vector spaces.

This makes certain theorems easier to prove, namely, functional stability.

(Concrete DMT) Fn :Mf → Vect ⇔ F̃n : R→ pVect (Categorical DMT)

For computation, restrict the DMT to assign a barcode to each leaf node.

(Barcode DMT) BFn :Mf → Barcodes

Tom Needham, along with Haibin Hang, Washington Mio, Osman Okutan and myself,

implemented this last version of the DMT in Python:

https://github.com/trneedham/Decorated-Merge-Trees

23

https://github.com/trneedham/Decorated-Merge-Trees


Point Cloud Example

Figure Credit: Tom Needham (FSU)
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Cycle Localization

Our DMT algorithm provides cycle localization for free!

Figure Credit: Tom Needham (FSU)
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Cycle Localization in Image Data

Figure Credit: Tom Needham (FSU)
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Discrimination for Takens Embedding

Figure Credit: Tom Needham (FSU)
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Parameterizing by Components

If f : X → Y is a map of (locally connected) spaces, then we can express it as

f = tfi :
⊔

i∈π0(X )

Xi →
⊔

j∈π0(Y )

Yj

This then induces a map

⊕fi :
⊕
i

Hn(Xi )→
⊕
j

Hn(Yj)

Let’s leverage this into a categorical observation.
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The Category of Parameterized Objects (Gabe Bainbridge, OSU PhD)

Definition

An I-parameterized object is a functor I : S → C, where S is any set.

Definition

A morphism from I : S → C to J : T → C consists of a map of sets m : S → T and

a natural transformation α : I ⇒ J ◦m =: m∗J.

Key Definition

Denote by pC the category of parameterized objects in C.
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Non-Isomorphism in our Motivating Example

Definition

I : S → C and J : T → C are isomorphic if there are set maps m : S → T and

n : T → S and transformations α : I ⇒ m∗J and β : J ⇒ n∗I satisfying

m∗β◦α = idI and n∗α◦β = idJ . In particular, n◦m = idS and m◦n = idT .

Our motivating example reduces to the consideration of these two objects in pVect:

x

k2

y

0

I

a

k

b

k

J

x

k2

a

k

⍺x

m
x

k2

n

βa

NOT ISOMORPHIC!

(m*J)(x) (n*I)(a)
S T
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Natural Projection Functors

Note that if C has coproducts, then pC participates in the following diagram of

categories and functors, where dom takes a parameterized object to its underlying

parameterizing set and U takes each parameterized object to its coproduct.

pC

Set C

Udom
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Refining a Topological Filtration

Lemma: Persistently Parameterized Space

Any persistent space of locally connected spaces F : (R,≤)→ Toplc has an

associated persistently parameterized space F̃ where F is naturally isomorphic to

the composition of functor U ◦ F̃

(R,≤)

pTopc

Set Toplc

F̃

π0◦F̃ F

Udom

π0
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Refining Persistent Homology

Categorical Definition of Decorated Merge Trees

Composition of F̃ with the homology functor Hn : pTop→ pVect yields the

categorical decorated merge tree in degree n, written F̃n.

(R,≤)

pVect

Set Vect

F̃n

π0◦F̃ Hn◦F

Udom
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Remarks on the Categorical Definition

Pros:

• For our motivating example, we identified an enrichment so that

F̃n � G̃n even though Hn ◦ F ∼= Hn ◦ G .

• Interleavings defined for Fun(R,D). Applying H : D→ D′ is a Lipschitz map.

Easy Stability Theorems

MT Interleaving Distance ≤ DMT Interleaving Distance ≥ Bottleneck Distance

Cons:

• Ease of theorems comes at the expense of abstraction.

• Not immediately obvious how barcodes actually “sit on top of” the merge tree.
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Restricting the Concrete DMT

Recall that F :Mf → Vect is the Leray (co)sheaf on the merge tree.

We can restrict this to a totally ordered subset and extract a barcode there.

([x1],r)

([x2],r)

([y1],s)

([y2],s)
([z],t)

r s t

Principal Up Set at ([x1],r)
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The Barcode DMT

Barcode Decorated Merge Tree

Given F : R→ Toplc, the barcode DMT assigns to each p = ([x ], r) ∈MF the

barcode of the restricted Leray cosheaf, i.e. Fn|Up . This defines

BFn :MF → Barcodes.

Note that whenever p = ([x ], r) 4 ([y ], s) = q we have BF (q) = BF (p)|[s,∞), so it

suffices to specify one barcode for each leaf node.
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The Barcode Transform is Not Injective

thin tree interval 
indecomposable

v

w

Pushforward
Barcode to ℝ

Barcodes “viewed”
from v and w

v

w

F1

BF1(v)
BF1(w)

⨁ ⨁

G1

v

w

Pushforward
Barcode to ℝ

Barcodes “viewed”
from v and w

v

w

BG1(v)
BG1(w)
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A Hierarchy of Distances

By considering interleavings of merge trees that also infimize the bottleneck distance

between the pullback of these restricted (co)sheaves, we obtain a new decorated

bottleneck distance.

This fits into the following hierarchy:

Theorem (C. + Hang, Mio, Needham, Okutan)

For R-spaces Xf := f : X → R and Yg := g : Y → R we have the following sequence

of bounds

dMT (Mf ,Mg ) ≤ dDB(BFn,BGn) ≤ dDMT (F̃n, G̃n) ≤ δI (Xf ,Yg )

There is no relationship between the bottleneck and decorated bottleneck distance!
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Some Comments

• There is an obvious generalization to Reeb graphs.

• Extracting tractable invariants from Decorated Reeb Graphs is a challenge.
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Sheaf Theory in The Large



Bird’s Eye Perspective

We have considered the TDA pipeline by studying individual inputs and outputs.

Most of these steps can be summarized using sheaf theory.

DATA Enriched TS TS Barcode/PD
continuous fiber discrete fiber1discrete fiber2

Counting fiber1
Informs creation 

of ETS
Counting Merge Trees & Reeb Graphs

We now recurse and study the TDA pipeline as a map, algebratizing it accordingly.
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Open Problem!

R1

R2

R3

R4

B
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The Persistence Map

The persistence pipeline is actually a sequence of spaces and maps:

f : X → R  F : t 7→ X≤t 7→ Hn(X≤t)  PD(f )n

H0 Persistence Diagram H1 Persistence Diagram H2 Persistence Diagram

Questions

What is the image of this map? and What are its fibers?
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Realization Problems for Persistence

The “Realization Problem” asks to provide a f : X → R with a given barcode.

There are uncountably many realizations so we often pass to equivalence classes.

Let’s bypass functions and work with the following step in the pipeline:

Free : Fun(R,Set)→ Fun(R,Vect) π0(F (s))→ π0(F (t))  H0(F (s))→ H0(F (t))

Both of these categories can be topologized using the interleaving distance.

The map taking a merge tree to its barcode is 1-Lipschitz.
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From Trees to Barcodes



The Elder Rule

There is an equivalent way of describing the Free functor just described.

The Elder Rule (apocryphal, but proved in C. ’17)

Given a merge tree π : T → R:

1. Start sweeping from −∞ to +∞
2. Whenever you encounter a leaf node of T , start drawing an interval, aka “bar” in

a barcode.

3. Bars correspond to branches until two branches meet.

4. The bar coming from the “older” branch continues, the younger one dies.
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The Realization Problem for Merge Trees

Birth Axis

Death Axis

This point represents
the half-open interval
[b,infty)

b

Merge Tree
that

“Realizes B”
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The Realization Problem for Merge Trees

Birth Axis

Death Axis

Merge Tree
that

“Realizes B”

b0

d1

b1

b0

b1
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The Realization Problem for Merge Trees

Birth Axis

Death Axis

2 Merge Trees
realize B.

Here is MT1

b0

d1

b1

b0

b1 b2

d2

b2
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The Realization Problem for Merge Trees

Birth Axis

Death Axis

2 Merge Trees
realize B.

Here is MT2

b0

d1

b1

b0

b1 b2

d2

b2
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Change of Birth Order

Birth Axis

Death Axis

1 Merge Tree
Realizes B

b0

d1

b1

b0

b1b2

d2

b2
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Possible Realization?

Is this a Realization
of B?

Birth Axis

Death Axis

b0

d1

b1

b0

b1b2

d2

b2
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Elder Rule

NO!ELDER RULE SAYS…

Birth Axis

Death Axis

b0

d1

b1

b0

b1b2

d2

b2
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Enumerating the Fiber of the Elder Map

Theorem (C. ’17; Garin, Hess, Kanari ’20)

Fix a barcode B where every endpoint is distinct:

B = {[b0,∞); [b1, d1); . . . ; [bn, dn)}

Further, we assume I0 = [b0,∞) and Ij := [bj , dj) satisfy

• (Containment) Ij ⊂ I0 for all j ≥ 1 and

• (Increasing Birth Times) b1 < b2 < · · · < bn.

Set µB(Ij) = #{k < j | dj < dk}. The number of merge trees realizing B is

TRN(B) := R(B) :=
n∏

j=1

µB(Ij)

! = 1
! = 1

! = 2
! = 1
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Significance: Stratified Covering Spaces

Containment Poset

The barcode B = {Ij} forms a poset, ordered by containment of intervals.

The space of persistence diagrams/barcodes is stratified by the containment poset.

The Elder Map defines a stratified covering space or a Set-valued constructible cosheaf

over barcode space. The number of sheets over each top-dimensional stratum is R(B).
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Inversion Vectors

Adélie Garin, Kathryn Hess, and Lida Kanari observed that generic persistence

diagrams can be viewed as permutations, i.e. elements of the symmetric group.

id (23) (12) (123)

(0,0,0) (0,0,1) (0,1,0) (0,0,2)

(132)

(0,1,1)

(13)

(0,1,2)

permutation

left inversion
vector

number of 
inversions

0 1 1 2 2 3

Observation by GHK + C. + Brendan Mallery and Jordan DeSha

Let σ be the permutation type of a generic B and let `(σ) denote the left-inversion

vector of σ, then R(B) =
∏n

i=1(`i (B) + 1)
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Tree Realization Number is Bruhat Order Preserving

Lemma (CDGHKM ’21)

If σ, σ′ ∈ Sn are such that σ < σ′ in the (left) Bruhat order, then R(σ) < R(σ′).

(12) ∗ − (23) ∗ −

(23) ∗ − (12) ∗ −

(12) ∗ − (23) ∗ −

id or [123]

(12) or [213] (23) or [132]

(132) or [312](123) or [231]

(13) or [321]
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TRN on the Cayley Graph

Figure Credit: Adélie Garin (EPFL)
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The Average TRN

Theorem (CDGHKM ’21)

If U denotes the uniform distribution on the symmetric group, then

EU(R(B)) =
(n + 1)!

2n
.
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Counting Combinatorial Merge Trees

1. Top 2n-dimensional strata of barcode space 7→ Sn, so there are n! many.

2. Merge trees form a (stratified) covering space of barcode space, so the sum∑
σ∈Sn

R(Bσ)

counts top 2n-dimensional strata.

3. Both the strata of barcode space and merge tree space are convex.
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n
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Counting Standard Merge Trees

0 1 2 3 n+1 n+2 n+3 2n

𝑛 + 1
2

𝑛
2

𝑛 − 1
2

=	!! !#$ !%^!
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Maximal Chains in the Lattice of Partitions

Theorem (CDGHKM ’21)

The Elder Map stratifies MT Space so that top-dimensional strata are in bijection

with maximal chains in the lattice of partitions. In summary,

∑
σ∈Sn

R(Bσ) =
∑
σ∈Sn

n∏
i=1

(li (σ) + 1) =
(n + 1)!n!

2n
.

cf. BHV space, where orthants are counted by (2n − 1)!!, where n = #leaves− 1
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BHV Trees

For 4 leaves, there are 15 BHV topologies.

Figure Credit: Wikipedia
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18 MT Trees (Figure Credit: Adélie Garin)
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Remarks on MT Space versus BHV Space

Merge Tree space is very different from BHV space.

• Points in MT Space correspond to isomorphism classes of merge trees.

• Generically we can label leaf nodes by birth time, but this is not continuous.

• Moreover, a given orthant of BHV space (split topology type) does not have a

uniquely associated permutation type of barcode, but we can bound this

difference precisely. See Prop 3.23 of https://arxiv.org/abs/2107.11212

• Understanding the stratified space structure is critical for doing good statistics.

67
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An Aside

Constructible cosheaves of sets are equivalent to stratified covering spaces.

Morally, this allows us to lift metrics from barcode space to merge tree space.

How to lift the Wasserstein p-distance on barcodes to merge trees? See

“Presentation Based Metrics on Merge Trees” by Tung Lam, R. Cardona, M. Lesnick

and C. where we avoid cosheaves entirely: https://youtu.be/b9x-Esq6nIE
68
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The Big PHT Sheaf



Persistent Homology Transform

Copyright held by Katharine Turner, Sayan Mukherjee, Doug Boyer
69



The Basic Idea (w/ Shreya Arya and Sayan Mukherjee)

Definition

Given M ⊆ Rd we have ZM := {(x , v , t) ∈ M × Sd−1 × R | x · v ≤ t}.

The derived PHT of M is the right derived pushforward of the constant sheaf onto

Sd−1 × R.

Notice that if we include a subset A ↪→ M this should induce a map of sheaves

PHT(M)⇒ PHT(A)

Theorem (ACM ’21)

PHT is a (hyper) sheaf on the o-minimal site of constructible sets.
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PHT Sheaf Example from Shreya Arya (Duke)
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PHT Sheaf Example from Shreya Arya (Duke)
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PHT Sheaf Example from Shreya Arya (Duke)

73



PHT Sheaf Example from Shreya Arya (Duke)
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PHT in Degree 0 is Enough

• For a convex subset A ⊆ Rd , all of the PHT is concentrated in degree 0.

• If we view a polyhedron M ⊆ Rd as glued together convex shapes, then we can

recover PHT(M) completely in terms of PHT0(Mi ), where {Mi} is a locally finite

convex cover of X .

Theorem (Arya, C., Mukherjee ’21)

For the simplicial complex M ∈ Rd and cover V = {Mi}i∈I of M, PHTn(M) is the

n-th cohomology of the following complex of sheaves:

0→ ⊕i∈IPHT0(Mi )→ ⊕i<jPHT0(Mi ∩Mj)→ · · ·

where the · · · represents the higher intersection terms.
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A Convergence Result for the PHT

The PHT type distance is

dI (PHT(X ),PHT(Y )) =

∫
Sd−1

δI (Xfv ,Ygv )dv .

Theorem (Arya, C., Mukherjee ’21)

Let M be a compact submanifold of Rd with condition number τ . Let x̄ = {x1, .., xn}
be a set of n points drawn independently and identically from a uniform probability

measure on M. Let 0 < ε < τ
4 vol (Sd−1)

. Let U = ∪x∈x̄Bε(x) be the union of the

open balls of radius ε around the sample points. Let K be the nerve of U. Then for

all n > β1(log β2 + log 1
δ ) we have that, with probability > 1− δ,

dI (PHT(M),PHT(K )) ≤ ε
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