

The Motivating Example

How do we differentiate the subsets X and Y using persistent homology?

Inverse Problems and Enriched Topological Summaries

The motivating example shows that persistent homology has an interesting inverse problem. The decorated merge tree, which knits together connected component (π_0) and homological information, is an example of a new **enriched topological summary (ETS)**, which fits into the existing pipeline of topological summaries

Cartoon Definition of the DMT

Decorated Merge Trees enrich merge trees with persistent homology barcodes that allow us to distinguish the two subsets.

Decorated Merge Trees for Persistent Topology

Justin Curry¹

Washington Mio³ Haibin Hang²

¹University at Albany SUNY

²University of Delaware ³Florida State University

$H_0 H_1$L...

also provides instant proofs of stability.

to **Vect**. These are also called representations or **tree modules**. **Barcode DMTs** take a tree module and restrict the representation to the up set at a point, thereby obtaining a barcode attached to that point. This is the most combinatorial, but also loses information.

The Category of Parameterized Objects

An **I-parameterized** object is a functor I from a set $S \in \mathbf{Set}$, viewed as a discrete category, to a category \mathbf{C} , i.e. $I: S \to \mathbf{C}$.

A morphism from an *I*-parameterized object in **C** to a *J*-parameterized object, written $J: T \to \mathbf{C}$, consists of a map of sets $m: S \to T$ and a natural transformation $\alpha: I \Rightarrow J \circ m =: m^*J$.

We denote by \mathbf{pC} the category of parameterized objects in \mathbf{C} , whose objects are functors I: $\mathbf{I} \to \mathbf{C}$ for some set $\mathbf{I} \in \mathbf{Set}$ and whose morphisms are natural transformations $\alpha : I \Rightarrow J \circ m$.

Refining Persistent Homology and Merge Trees

Any persistent space of locally path connected spaces $F : (\mathbb{R}, \leq) \to \mathbf{Top}^{\mathbf{lpc}}$ has an associated **persistently parameterized space** \tilde{F} where F is naturally isomorphic to the disjoint union of the spaces indexed over the merge tree.

Composition of \tilde{F} with the homology functor $H_n : \mathbf{pTop} \to \mathbf{pVect}$ yields the categorical DMT in degree n, written \tilde{F}_n , making the diagram commute, up to natural isomorphism.

Notice how we obtain merge trees and persistent homology in a single unified framework! Moreover the notion of interleaving of categorical DMTs comes for free.

 H_1 barcode for Y

Tom Needham³ Osman Berat Okutan³

DMTs Three Different Ways

DMTs can be approached three different ways, with each approach having particular advantages and disadvantages. However, Definitions 1 and 2 are *equivalent* in a certain sense.

A Categorical DMT is defined as a functor from (\mathbb{R}, \leq) to **pVect**. This latter category is the category of parameterized vector spaces, which can be challenging to understand, but it provides a precise sense in how DMTs refine merge trees and persistent homology. This

Concrete DMTs are defined as functors from $(\mathcal{M}_F, \preccurlyeq)$, the merge tree viewed as a poset,

Vect

The assignment to each $p \in \mathcal{M}_F$ the barcode of the restricted persistent homology module $BC(\mathcal{F}|_{U_n})$ defines the **barcode DMT**: $\mathcal{BF}:\mathcal{M}_F
ightarrow \mathbf{Barcodes}$

With this definition we can define a **decorated bottleneck distance** in terms of interleavings of the underlying merge trees and matchings of the associated barcodes.

Main Theorem (Hierarchy of Stability Results) and Code

For \mathbb{R} -spaces $X_f := f : X \to \mathbb{R}$ and $Y_g := g : Y \to \mathbb{R}$ we have the following $d_{MT}(\mathcal{M}_f, \mathcal{M}_g) \le d_{DB}(\mathcal{BF}_n, \mathcal{BG}_n) \le d_{DMT}(\tilde{F}_n, \tilde{G}_n) \le \delta_I(X_f, Y_g)$ Moreover, we have experimentally verified this refined distinguishing power in practice. https://github.com/trneedham/Decorated-Merge-Trees

Read (lots) more on the arXiv:

https://arxiv.org/abs/2103.15804

Tree Modules and Indecomposables

Barcode DMTs