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A C K N O W L E D G E M E N T S

At the current moment in time, a PhD is the highest academic degree awarded in the
United States. As such, this thesis reflects over two decades of formal education and
schooling across multiple institutions. It also reflects the author’s life experience to date,
which is formed in many informal and non-academic ways. Accounting for all of these
influences and giving credit where credit is due is an impossible task; however, I would
like to take some time to thank the many hands which helped this thesis come to be.
Given the public nature of this document, I will not always name names, but I will make
clear the contributions of my colleagues and teachers.

First and foremost I must thank my parents for bringing me into the world. While
my father was in the Navy, my mother had the strongest influence on my education.
Instilling a love of reading is, besides giving me life itself, the greatest gift she has given
to me. I remember distinctly being told that, given our socio-economic status, receiving
a scholarship was the only way I would make it to a university one day, and that reading
would take me there. My sense of reverence for reading, among other things, is entirely
due to my mother. In contrast, my father engaged me in philosophical dialog at a young
age, which is how I gained my first experience with critical thinking. He was never
much of a reader; he preferred to sort things out for himself. My entire family — aunts,
uncles, cousins and grandparents included — have supported me every step of the way
and they know I owe them a great deal.

If anyone thinks that obtaining a PhD comes after an endless stream of successes, they
are mistaken. I failed many times, and fortunately I was given many second chances. The
educators in the Virginia Beach public school system gave me my first second chance by
letting me retake a placement exam for the gifted and talented program. Mr. Ausberry,
at Thomas Harrison Middle School, requested that I be accelerated a year in mathemat-
ics. Mr. Frutuozo made being a scientist seem fashionable, by being a rock star himself.
At Harrisonburg High School, I had many excellent instructors, but I felt the strongest
direction and guidance from Henry Buhl, Myron Blosser, Andrew Jackson, Patrick Lint-
ner and David Loughran. Without these hardworking and underpaid teachers, I don’t
think I would have gotten to go to MIT.

Attending MIT as an undergrad was one of the most formative experiences of my life.
It certainly tested and broke the mental toughness that I thought I had. Sitting as a fresh-
man in Denis Auroux’s 18.100B and getting my first taste of point-set topology was like
stepping in to another dimension. It was too much, too fast, and for a moment I thought
that the gate of mathematics was closed to me. Gerald Sussman helped steer me back to-
wards mathematics by preaching the value of the MIT quadrivium: logic/programming,
analysis, algebra, geometry, topology, relativity and quantum mechanics. Haynes Miller
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gave me my second second chance by overlooking my shabby mathematical prepara-
tion and letting me study for the Part 1B tripos at Churchill College, as part of the
Cambridge-MIT exchange program. Cambridge exposed me to one of the greatest math-
ematical cultures to ever exist. The integrated nature of the classes and the year-long
preparation for the tripos helped me gain independence and synthesize my lessons into
a unified whole. It was in the Churchill buttery, where Part II and III students waxed
poetic about Riemann surfaces and topoi before I even knew what a ring was, that I
decided I had to pursue mathematics for graduate school. Returning to MIT, Haynes
exposed me to even more advanced mathematics through summer projects and an IAP
project with Aliaa Barakat on integrable systems. Working with Aliaa and, later, Victor
Guillemin gave me lots of practice with writing mathematics. All of this has served me
well for graduate school.

The University of Pennsylvania appealed to my theory-building nature, but it was
having to retake the preliminary exams that helped me become a better problem-solver.
While drudging through the Berkeley Problems in Mathematics [dSS04] book, my classes
gave me something to look forward to. Tony Pantev made the first-year algebra sequence
geometric for me, by introducing us to the Serre-Swan correspondence, categories, sim-
plicial sets, spectra and sheaves. Jonathan Block balanced the algebraic and the geometric
in Penn’s lengthy topology sequence and introduced us to “Brave New Algebra.” The
graduate student body at Penn helped contextualize my mathematical lessons, while my
roommate, Elaine So, gave me lessons in how to be a better human.

My advisor, Robert Ghrist, believed in me when I did not believe in myself. He
taught me to have good taste in mathematics and introduced me to Morse theory, Euler
calculus, integral geometry and much more. When I first became his student, the idea
that no mathematical object is too abstract to be incarnate resonated deeply with me then,
as it does today. Rob outlined a beautiful vision for applied mathematics and worked
very hard to realize his ambitious plan. By bringing Yasu Hiraoka, Sanjeevi Krishnan,
David Lipsky, Michael Robinson and Radmila Sazdanovic together, Rob augmented my
graduate training in profound ways. Given this investment, Rob was extremely generous
to let me wander geographically and intellectually. Because of him and Penn’s Exchange
Scholar program, I was able to live in Princeton for the last few years of my graduate
career.

At Princeton, I approached Bob MacPherson in person, who luckily was thinking
about applied sheaf theory because of my advisor and Amit Patel, and he agreed to
organize a seminar at the Institute for Advanced Study. Listening and watching Bob lec-
ture was like getting to peer through a telescope into the far reaches of the mathematical
kingdom. The attendees of this seminar were a motley crew of thinkers and Bob was
our shepherd. Bob never said more than was necessary, never wanted his own perspec-
tive or understanding to crowd out a newly forming one, and did his best to cultivate
each individual’s diverse set of mental connections, life experiences and accompanying
insights.
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Many people helped me directly and indirectly while finishing my thesis. Mark
Goresky taught me the subtleties of stratification theory, set a high standard for mathe-
matical precision and was enthusiastic and supportive of all my efforts. David Treumann
and Jon Woolf both clarified details concerning this work via email. Greg Henselman,
Sefi Ladkani, Michael Lesnick, and Jim McClure all provided editorial comments on
early drafts of this thesis. Vin de Silva, Matthew Kahle, Dmitriy Morozov, Vidit Nanda,
Primoz Skraba and Mikael Vejdemo-Johansson all provided moral support. Ryan and
Cate Hodgen kept me sane during my frequent trips to Virginia, where I helped my Dad
through the painful process of fighting, and losing to, bladder cancer. My fiancée, Sasha
Rahlin, encouraged me to pursue a math major when we first started dating as sopho-
mores, made my junior year abroad doubly wonderful, navigated the stressful two-body
aspect of picking a graduate school as a senior, helped me through all of the ups and
downs of graduate school along with losing my father, and continues to dazzle me with
her focus, drive, beauty and brains. You and Simone are the best.
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A B S T R A C T

S H E AV E S , C O S H E AV E S A N D A P P L I C AT I O N S

Justin Michael Curry

Robert W. Ghrist

This thesis develops the theory of sheaves and cosheaves with an eye towards applica-
tions in science and engineering. To provide a theory that is computable, we focus on a
combinatorial version of sheaves and cosheaves called cellular sheaves and cosheaves,
which are finite families of vector spaces and maps parametrized by a cell complex. We
develop cellular (co)sheaves as a new tool for topological data analysis, network coding
and sensor networks. We utilize the barcode descriptor from persistent homology to
interpret cellular cosheaf homology in terms of Borel-Moore homology of the barcode.
We associate barcodes to network coding sheaves and prove a duality theorem there.
A new approach to multi-modal sensing is introduced, where sheaves and cosheaves
model detection and evasion sets. A foundation for multi-dimensional level-set persis-
tent homology is laid via constructible cosheaves, which are equivalent to representa-
tions of MacPherson’s entrance path category. By proving a van Kampen theorem, we
give a direct proof of this equivalence. A cosheaf version of the ith derived pushforward
of the constant sheaf along a definable map is constructed directly as a representation
of this category. We go on to clarify the relationship of cellular sheaves to cosheaves
by providing a formula that takes a cellular sheaf and produces a complex of cellular
cosheaves. This formula lifts to a derived equivalence, which in turn recovers Verdier
duality. Compactly-supported sheaf cohomology is expressed as the coend with the im-
age of the constant sheaf through this equivalence. The equivalence is further used to
establish relations between sheaf cohomology and a herein newly introduced theory of
cellular sheaf homology. Inspired to provide fast algorithms for persistence, we prove that
the derived category of cellular sheaves over a 1D cell complex is equivalent to a category
of graded sheaves. Finally, we introduce the interleaving distance as an extended metric
on the category of sheaves. We prove that global sections partition the space of sheaves
into connected components. We conclude with an investigation into the geometry of
the space of constructible sheaves over the real line, which we relate to the bottleneck
distance in persistence.
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P R E FA C E

The motivation behind this thesis is that sheaves are useful for science and engineering
applications. In their most impressionistic form, sheaves are nothing more than a way
of tethering data to a space. Passing messages over a network, gathering intelligence
in temporal or spatial domains, and characterizing the shape of data as a function of
parameter value are all applications where the theory of sheaves and cosheaves are well-
adapted. There are hopefully many other, yet to be discovered, applications of sheaves
that are waiting for the right person to come along and flesh them out. However, the
author is of the opinion that applied sheaf theory must confront three issues:

foundations for technology transfer and communication: The standard formulations
of sheaves and derived functors are difficult to communicate to researchers out-
side of “pure” mathematics. Simpler, alternative descriptions of the sheaves and
cosheaves must be presented in an easily accessed format.

computations in practice, on a computer, and theoretically: Any application of sheaf
theory must be programmable on a computer in an efficient manner.

perturbations by noise and approximation: Any technique for modeling the world
must be able to account for noise. Being able to test or reject hypotheses formed in
a model is essential for interfacing with data from experiments.

In addition to making a first pass at applications of sheaf theory to topological data anal-
ysis (TDA) in Chapter 8, network coding in Chapter 9 and sensor networks in Chapter 10,
this thesis addresses the above three issues.

A great deal of hard work has already been done to address the first two issues. Com-
binatorial descriptions of sheaves have been discovered independently by Masaki Kashi-
wara [Kas84], Robert MacPherson and Christopher Zeeman [Zee62a]. The notion of
a cellular sheaf, developed by Allen Shepard [She85] under MacPherson’s direction, re-
quires only linear algebra to understand: given a cell complex, a cellular sheaf consists of
a choice of vector space for each cell and a choice of linear map from each cell to each of
its cofaces, compatible with composition. This notion of a sheaf is easily programmable
on a computer, as is its cohomology, which can be further simplified via discrete Morse
theory [CGN13]. Unfortunately, Shepard’s thesis was never published and the other con-
tributions of Kashiwara and Zeeman overshadowed these modest-looking discoveries;
they were developed no further.

In this thesis we attempt to revive the theory of cellular sheaves by developing them
for applications and embedding them into a larger mathematical context as well. Al-
though Shepard never explained this, cellular sheaves are actual sheaves when viewed
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through the Alexandrov topology, as we explain in Chapter 4. This perspective em-
phasizes the view that cellular sheaves are functors from the face-relation poset. The
relationship between functors modeled on posets to sheaves has been explored in many
works [Bac75, Yuz81, Yan01, BBR07, Lad08] as well as many others. Cellular sheaves
can also be viewed as a special instance of constructible sheaves, which are equivalent
to representations of MacPherson’s exit path category [Tre09], which we develop in its
cosheaf version in Chapter 11 for the first time. To connect these perspectives to a more
standard presentation of sheaves, we explain the general theory of sheaves familiar to
most mathematicians in Chapter 2. The length of the thesis is in part due to the fact that
it attempts to speak in multiple languages to multiple specialists and non-specialists
alike.

The use of cosheaves is initially motivated for one simple reason: homology. The ap-
plied topology community has made headway into convincing scientists that homology
is a useful bit of linear algebra. One can visualize circles in data [Car09] or holes in
sensor networks [dSG06a] and nod when the theory agrees, however cohomology is the
theory best suited to sheaves and it is not easily visualized in the absence of Poincaré
duality. To continue to use homology when speaking to researchers in other fields,
one must work with cosheaves instead. However, cosheaves have gained prominence in
current research mathematics as well. Costello and Gwilliam’s work on factorization al-
gebras in quantum field theory [CG]; Lurie and Salvatore’s work on nonabelian Poincaré
duality; Ayala, Francis and Tanaka’s work on factorization homology and manifold calcu-
lus [AFT12]; have all made use of variations on cosheaves. Consequently, setting down a
general theory for cosheaves seemed to be well-timed. This thesis provides a proof of the
existence of cosheafification for Vect-valued pre-cosheaves, which is non-obvious since
cofiltered limits and finite limits do not commute in Vect; one cannot simply dualize a
pre-cosheaf into a pre-sheaf and use Grothendieck’s sheafification procedure in the op-
posite category. Fortunately, cellular cosheaves never need to be cosheafified because of
their strong finiteness properties. To clarify their relationship with Shepard’s theory, we
prove that cellular sheaves and cosheaves are derived equivalent in Chapter 12. There
is another deeper reason why cosheaves should be studied, which is explained in Chap-
ter 13. Just as tensors take in vectors and spit out numbers, cosheaves act on sheaves and
produce vector spaces.

Theoretical computability is one of sheaf theory’s greatest strengths. The gluing axiom
provides a form of algorithmic compression: if one wants to query the data lying over
a large space, it suffices to pass to a cover, compute each piece separately and then
glue together the results via a limit (kernel of a matrix). Indeed, the classic Mayer-
Vietoris long exact sequence can be viewed as a special case of cellular sheaf cohomology,
as Section 8.2.2 explains. Unfortunately, for higher-order stitching together of data, a
spectral sequence is required, where Leray differentials frustrate the compression of
data offered by sheaves and cohomology. In Chapter 14 we prove in a precise sense that
these differentials can be ignored when working over graphs.

xv



The thesis concludes with a first attack on developing a perturbation theory for
sheaves. By borrowing the idea of interleavings [CCSG+

09], in Chapter 15 we introduce
an extended metric on the category of sheaves over a metric space. Using this metric
we can prove that the assignment from maps f : Y ! X to sheaves f⇤kY is 1-Lipschitz in
these metrics. The broader problem of developing a theory of statistics for sheaves is
wide open.

xvi



Part I

A M AT H E M AT I C A L I N T R O D U C T I O N

This part serves multiple groups of people and can be used in different ways:

• For those who are category theory neophytes, a reading of Chapter 1

is advised, after which they should move on to Part ii, with particular
emphasis on the beginning of Chapter 4 and Chapter 6.

• Chapter 2 is designed for those who want a general definition of sheaves
and cosheaves on a topological space. After looking at the definition, one
should proceed as quickly as possible to Chapter 3 to get some simple
examples.

• Section 2.2 is meant for people who have always found the expression
of the sheaf axiom as an exact sequence a little opaque. Such people are
usually frustrated by the notation used in Čech homology, which is the
subject of Section 2.3.

• Sections 2.5 and 2.5.4 are for those who think of cosheaves simply as
sheaves valued in the opposite category.

1



1
A P R I M E R O N C AT E G O RY T H E O RY

“A healthy new seed was planted some twenty odd years ago in the well fertilized soil
of the mathematical periodical literature — the notion of a category. It sprouted, took
root, flowered, attracted bees, and by now the landscape is dotted with its progeny. It
is a beneficent plant: mathematical gardeners have come to appreciate its usefulness in
holding down the topsoil and preventing dust storms; indeed, some half dozen books
have appeared within the past dozen years putting it to this use. It is a beautiful
plant too, whose rapid proliferation has produced many unique and exotic variants;
but, perhaps because of its increasingly multiform variety, the book extolling all its
loveliness has not yet been written.”

— F.E.J. Linton [Lin65]

Categories emerged out of the study of functors, which were originally conceived as
a principled way of assigning algebraic invariants to topological spaces. Thus, category
theory is part and parcel of the study of algebraic topology. However, from its conception
in Samuel Eilenberg and Saunders Mac Lane’s 1945 paper on a “General Theory of
Natural Equivalence” [EM45], it was realized that the language of categories provides
a way of identifying formal similarities throughout mathematics. The success of this
perspective is largely due to the fact that category theory — as opposed to set theory
— emphasizes understanding the relationships between objects rather than the objects
themselves.

In this section, we provide a brief review of the parts of category theory needed to un-
derstand the abstract definitions of a sheaf and cosheaf in Chapter 2. Most importantly,
the reader should be able to do the following before moving onto that section:

• Think of the set of open sets of a topological space X as a category.

• Understand how to summarize the behavior of various functors via limits and
colimits.

We have tried to provide a self-contained introduction to category theory, but
the reader is urged to consult Mac Lane’s “Categories for the Working Mathemati-

2



1.1 categories 3

cian” [Mac98] for a book that very well may be the book anticipated by the quote
above.

1.1 categories

One should visualize categories as graphs with objects corresponding to vertices and
maps as edges between vertices, subject to relations that specify when following one
sequence of edges is equivalent to another sequence. One can think of some of the
axioms of a category as gluing in triangles and tetrahedra to witness these relations.

• // •

•

��
•

??

// •

•

��

// •

•

?? 77

// •

OO

Definition 1.1.1 (Category). A category C consists of a class of objects denoted obj(C)
and a set of morphisms HomC(a,b) between any two objects a,b 2 obj(C). An individ-
ual morphism f : a ! b is also called an arrow since it points (maps) from a to b. We
require that the following axioms hold:

• Two morphisms f 2 HomC(a,b) and g 2 HomC(b, c) can be composed to get
another morphism g � f 2 HomC(a, c).

• Composition is associative, i.e. if h 2 Hom(c,d), then (h � g) � f = h � (g � f).

• For each object x there is an identity morphism idx 2 HomC(x, x) that satisfies
f � ida = f and idb � f = f.

When the category C is understood, we will sometimes write Hom(a,b) to mean
HomC(a,b).

One can usually ignore the technicality that the collection of objects forms a class
rather than a set. A class is a collection of sets that one can refuse to quantify over in a
logical sense. This prohibits Russell-type paradoxes gotten by considering the category
of all categories that do not contain themselves. Colloquially, one says a proper class
is “bigger” than a set. In order to avoid certain machinery that accompanies the use of
classes, we will often consider categories that are “small” in a precise sense.1

Definition 1.1.2 (Small and Finite Categories). A category is small if its class of objects
is actually a set. A category is finite if its set of objects has finite cardinality.

1 The machinery we are referring to is that of Grothendieck universes.
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Example 1.1.3 (Discrete Category). Any set X can be regarded as a discrete category X̄
with only the identity morphism idx sitting over each object. There are no non-identity
morphisms.

Recall that a relation R on a set X is a subset of the product set X⇥X. If two elements
are related by R, one writes xRy to mean that (x,y) 2 R. We now give an example of
some relations on a set that endow that set with the structure of a category.

Example 1.1.4 (Posets and Preorders). A preordered set is a set X along with a relation
6 that satisfies the following two axioms:

reflexivity — x 6 x for all x 2 X

transitivity — x 6 y and y 6 z implies x 6 z

A partially ordered set, or poset for short, is a preordered set that additionally satisfies
the following third axiom:

anti-symmetry — x 6 y and y 6 x implies x = y

Any preordered set (X,6) defines a category by letting the objects be the elements of X
and by declaring each Hom set Hom(x,y) to either have a unique morphism if x 6 y or
to be empty if x ⇥ y.

We now reach our example of fundamental importance.

Example 1.1.5 (Open Set Category). The open set category associated to a topological
space X, denoted Open(X), has as objects the open sets of X and a unique morphism
U! V for each pair related by inclusion U ✓ V .

There is an example very closely aligned with the category of open sets that is allegedly
due to Raoul Bott, who gave it as an example of a topological category [Bot72, LHM+

10].

Example 1.1.6 (Pointed Open Set Category). The pointed open set category Open⇤(X)
associated to a topological space X has pairs (U, x), where U is an open set and x is a
point in U, for objects and a unique morphism (U, x)! (V ,y) if U ⇢ V and x = y.

This pointed open set category takes us nicely over to a category whose objects are
points of a topological space. First, we introduce some terminology.

Definition 1.1.7 (Groupoid). A groupoid is a category where every morphisms is invert-
ible. In other words if G is a groupoid, then for every pair of objects x,y 2 obj(G) and
every morphism ↵ 2 HomG(x,y) there exists a morphism � 2 HomG(y, x) such that
↵ �� = idy and � �↵ = idx.
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Exercise 1.1.8. Let G be a groupoid with only one object. Show that the structure ax-
ioms of a category along with the property of being a groupoid guarantees that G is a
group. Observe that this gives us a way of treating every group as a category, where
multiplication in the group corresponds to composition of morphisms.

Definition 1.1.9 (The Fundamental Groupoid). Let X be a topological space. The fun-
damental groupoid ⇡1(X) has points x 2 X for objects and homotopy classes of paths
relative endpoints for morphisms. Specifically,

Hom⇡
1

(X)(x,y) := {� : [0, 1]! X |�(0) = x,�(1) = y}/ ⇠

where � ⇠ � 0 if there exists a third continuous map h : [0, 1]2 ! X such that h(0, t) = �(t),
h(1, t) = � 0(t), h(s, 0) = x and h(s, 1) = y.

Remark 1.1.10 (Poincaré 1-Groupoid). To a topological space X, one can consider a
generalization of the fundamental groupoid, called the Poincaré 1-groupoid ⇡1(X),
which has an object for each point of X, a morphism for every path � : [0, 1] ! X , a
“2-morphism” for every continuous map � : �2 ! X, and so on for higher �n. The
2-morphisms should be regarded as providing a homotopy between �|0,2 and �|1,2 � �|0,1,
i.e. a morphism between morphisms. Here �|i,j is the restriction of the map � to the edge
going from vertex i to j. As stated, this is an example of an 1-category, which is currently
vying to replace ordinary category theory as the foundation for mathematics [Lur09a].

The above examples of categories are quite small when compared to the categories that
Eilenberg and Mac Lane first introduced. The categories considered there correspond to
data types and we will usually refer to them with the letter D. For this paper D will
usually mean one of the following:

Set — the category whose objects are sets and whose morphisms are all set maps (multi-
valued maps are prohibited as are partially defined maps)

Ab — the category whose objects are abelian groups and whose morphisms are group
homomorphisms

Vect — the category whose objects are vector spaces and whose morphisms are linear
transformations

vect — the category whose objects are finite-dimensional vector spaces and linear trans-
formations

Top — the category whose objects are topological spaces and whose morphisms are
continuous maps
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The category vect is an example of a subcategory, which we now define.

Definition 1.1.11 (Subcategories). Let C be a category. A subcategory B of C consists of
a subcollection of objects from C and a choice of subset of the morphism set HomC(x , y)
for each pair x , y 2 obj(B). We require that these morphism sets have the identity and
be closed under composition so as to guarantee that B is a category. We say that a
subcategory is full if HomB(x , y) = HomC(x , y).

Categories have a built-in notion of directionality. For example, in Set every object X
has a unique map from the empty set ;, but there are no maps to the empty set. We can
abstract out this property, so as to make it apply in other situations.

Definition 1.1.12 (Initial and Terminal Objects). An object x 2 obj(C) is said to be initial
if for any other object y 2 obj(C) there is a unique morphism from x to y. Dually, an
object y is said to be terminal if for any object x there is a unique morphism from x to y.

As already mentioned, in Set the empty set is initial, but it is not terminal. On the
contrary, the terminal object is the one point set {?} since there is only one constant map.
Similarly, for Open(X) the empty set is initial, but the whole space X is terminal. In Vect
the initial and terminal objects coincide with the zero vector space. In some sense, the
difference between the initial and terminal objects in a category measure how different
it is from its reflection. We now say what we mean by a category’s reflection.

Example 1.1.13 (Opposite Category). For any category C there is an opposite categoryCop where all the arrows have been turned around, i.e. HomCop(x,y) = HomC(y, x).

Remark 1.1.14 (Duality and Terminology). Because one can always perform a general
categorical construction in C or Cop every concept is really two concepts. As we shall
see, this causes a proliferation of ideas and is sometimes referred to as the mirror prin-
ciple. The way this affects terminology is that a construction that is dualized is named
by placing a “co” in front of the name of the un-dualized construction. Thus, as we
will see shortly, there are limits and colimits, products and coproducts, equalizers and
coequalizers, among other things.

Now we introduce the fundamental device that assigns objects and morphisms in one
category to objects and morphisms in another category. Historically, this device was
introduced first and categories were summoned into existence to provide a domain and
range for this assignment.

Definition 1.1.15 (Functor). A functor F : C ! D consists of the following data: To
each object a 2 C an object F(a) 2 D is associated, i.e. a  F(a). To each morphism
f : a ! b a morphism F(f) : F(a) ! F(b) is likewise associated. We require that the
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functor respect composition and preserve identity morphisms, i.e. F(f � g) = F(f) � F(g)
and F(ida) = idF(a). For such a functor F, we say C is the domain and D is the codomain
of F.

Remark 1.1.16. We can phrase the definition of a functor differently by saying
that we have a function F : obj(C) ! obj(D) and functions F(a,b) : HomC(a,b) !
HomD(F(a), F(b)) for every pair of objects a,b 2 obj(C). We require that these functions
preserve identities and composition. When F(a,b) : HomC(a,b) ! HomD(F(a), F(b))
is injective for every pair of objects we say F is faithful. When F(a,b) is surjective for
every pair of objects we say F is full. When a functor is both full and faithful, we say it
is fully faithful.

Exercise 1.1.17. Check that the definition of a subcategory guarantees that the inclusionB ,! C is a functor.

An example familiar to every topologist is that of homology and cohomology with
field coefficients. In every non-negative degree i, these invariants define functors

Hi(-;k) : Top! Vect and Hi(-;k) : Topop ! Vect
respectively. Here we have used the opposite category as an alternative way of saying
cohomology is contravariant.

Historically, there was a plethora of different homology theories — simplicial, singular,
Čech, Vietoris, Alexander, et al — and every time one was introduced a long repetition
of the basic properties of that homology theory ensued. Understanding the precise
relationships between these motivated the notion of a map between functors, which led
in turn to the Eilenberg-Steenrod axioms [Mac89, p.335].

Definition 1.1.18 (Natural Transformation). Given two functors F,G : C ! D a natural
transformation, sometimes written ⌘ : F ) G, consists of the following information:
to each object a 2 C, a morphism ⌘(a) : F(a) ! G(a) is assigned such that for every
morphism f : a! b in C the following diagram commutes:

F(a)
⌘(a) //

F(f)
✏✏

G(a)

G(f)
✏✏

F(b)
⌘(b) // G(b)

By commutes, we mean G(f) � ⌘(a) = ⌘(b) � F(f).

Definition 1.1.19. Two functors F,G : C! D are said to be naturally isomorphic if there
is a natural transformation ⌘ : F ) G such that for every object a 2 C the morphism
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⌘(a) is an isomorphism, i.e. it is invertible. These inverse maps ⌘(a)-1 define an inverse
natural transformation ⌘-1 : G) F.

Functors and natural transformations assemble themselves into a category in their
own right. Since an arrow is an arrow by any other symbol, we will sometimes use the
notation F ! G to denote a natural transformation, instead of F ) G. In the functor
category, we will see that naturally isomorphic functors are isomorphic objects. This
demonstrates again the linguistic efficiency of category theory.

Example 1.1.20 (Functor Category). Fun(C, D) denotes the category whose objects are
functors from C to D and whose morphisms are natural transformations.

Certain functors deserve special attention. These are the ones that allow us to iden-
tify two different categories. One approach to identifying categories is to say that two
categories C and D are isomorphic if there are functors F : C ! D and G : D ! C such
that G � F = idC and F �G = idD. This definition is so restrictive that it rarely occurs.
Thus, we have a looser notion that includes isomorphism as a special case. Instead of
asking that F �G be equal to idD, we only require that they be isomorphic as objects inFun(D, D) and similarly for G � F and idC in Fun(C, C). The reader should compare this
with the notion of homotopy equivalence.

Definition 1.1.21. A pair of functors F : C ! D and G : D ! C together define an
adjoint equivalence of categories if there are two natural isomorphisms of functors
✏ : F �G! idD and ⌘ : idC ! G � F.

We will see that this notion of a equivalence is a special instance of an adjunction,
which is taken up in Section 1.5

Equivalence can also be phrased in a way that doesn’t require us to construct G as a
“weak inverse” of F.

Definition 1.1.22 (Fully Faithful and Essentially Surjective). A functor F : C! D induces
an equivalence of categories if it is bijective on Hom sets (fully faithful) and is essentially
surjective. This last property means that for every object d 2 D there is an object c 2 C
such that F(c) is isomorphic to d, i.e. F is bijective on isomorphism classes of C and D.

The notion of equivalence allows us to find compressed presentations of a category.

Definition 1.1.23 (Skeletal Subcategory). Suppose C is a category, then a subcategory S is
skeletal if the inclusion functor is an equivalence, and no two objects of S are isomorphic.

If C is small, then we can describe explicitly how to construct a skeletal subcategory S.
On the objects of C we define an equivalence relation that says x ⇠ x 0 if and only if x and
x 0 are isomorphic. To define a skeletal subcategory we pick one object x 2 x̄ from each
equivalence class and define the morphisms to be HomS(x̄, ȳ) := HomC(x,y).
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Exercise 1.1.24 (Fundamental groupoid). Suppose X is a path connected space. Show
that for any point x0 2 X, the fundamental group ⇡1(X, x0) is a skeletal subcategory of
⇡1(X).

Finally, let’s analyze how working in the opposite category impacts functors and nat-
ural transformations. Observe, first and foremost, that formality allows us to take a
functor F : C! D and define a functor Fop : Cop ! Dop. Moreover, a natural transforma-
tion ⌘ : F ) G translates to a natural transformation ⌘op : Gop ) Fop. This observation
allows us to state the equalities

Fun(Cop, Dop) = Fun(C, D)op or Fun(Cop, Dop)op = Fun(C, D)

since (Cop)op is isomorphic to C (not just equivalent). See the wonderful work “Abstract
and Concrete Categories: The Joy of Cats” [AHS09a] for more on duality and category
theory more generally.

1.2 diagrams and representations

Categories and functors allow us to develop an algebra of shape, the shapes being modeled
on the domain category of a functor. For example, we will be interested in studying data
arranged in the following forms:

• //

✏✏

•

•

•

�� ��

•

• •

•

✏✏
• // •

If we imagine the identity arrows in a category as being the vertices themselves, and
thus not drawn independently of the objects, each of these shapes gives an example of a
finite category.

Definition 1.2.1 (Diagram). Suppose I is a small category and C is an arbitrary category.
A diagram is simply a functor F : I! C.

Example 1.2.2 (Constant Diagram). For any category I there is always a diagram for
each object O 2 C, called the constant diagram, constO : I ! C where constO(x) =
constO(y) = O for all objects x,y 2 I. Every morphism in I goes to the identity morphism.

Definition 1.2.3 (Representation). A representation of a category C is a functor F : C !Vect.
One should note that this definition generalizes the notion of a representation of a

group. Every group, say Z for example, can be considered as a small category with a
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single object ? and Hom(?, ?) = Z. A representation of Z then corresponds to picking a
vector space V and assigning an endomorphism of V for each element of Z, i.e. it is a
functor.

? //

g

✏✏

V

⇢(g)
✏✏

? // V

Maps of representations correspond precisely with natural transformations of such func-
tors. Isomorphic representations are naturally isomorphic functors.2 These basic notions
carry over to the representation theory of arbitrary categories, which allows us to com-
pare different situations in one language.

1.3 cones and limits

The next two sections are devoted to studying one way (and a dual way) of summarizing
a functor’s behavior. This gives a way of compressing the data of a functor into a single
object. These concepts are fundamental to the study of sheaves and cosheaves.

Definition 1.3.1 (Cone). Suppose F : I ! C is a diagram. A cone on F is a natural
transformation from a constant diagram to F. Specifically, it is a choice of object L 2 C
and a collection of morphisms  x : L ! F(x), one for each x, such that if g : x ! y is a
morphism in I, then F(g) � x =  y, i.e. the following diagram commutes:

F(x)
F(g) // F(y)

L
 
x

``

 
y

==

In other words,  y = F(g) � x.

Definition 1.3.2. The collection of cones on a diagram F form a category, which we will
call Cone(F). The objects are cones (L, x) and a morphism between two cones (L 0, 0x)
and (L, x) consists of a map u : L 0 ! L such that  0x =  x � u for all x

A limit is simply a distinguished or universal object in the category of cones on F.

Definition 1.3.3 (Limit). The limit of a diagram F : I ! C, denoted lim � F is the terminal
object in Cone(F). This means that a limit is an object lim � F 2 C along with a collection of
morphisms  x : L! F(x) that commute with arrows in the diagram such that whenever

2 Confusingly, the term “equivalent representations” is often used.
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there is another object L 0 and morphisms  0x that also commute there then exists is a
unique morphism u : L 0 ! lim � F that additionally commutes with everything in sight,
i.e.  0x =  x � u for all x.

F(x)
F(g) // F(y)

lim � F

 
x

bb
 
y

<<

L 0

 0
x

YY

9! u

OO  0
y

EE

Remark 1.3.4 (Glossary). Quite confusingly, the following terms are synonyms for limits:
inverse limits, projective limits, left roots, lim and lim � are all common.

We now consider some examples of limits over discrete categories.

Example 1.3.5 (Products). Consider the following index category and diagram:

• • F(i) F(j)

The limit of this diagram is called the product and is usually written

F(i)
Y

F(j).

More generally, we define the product to be the limit of any diagram F : I ! C indexed
by a discrete category and write

Q
i F(i). Sometimes one writes ⇥iF(i) for the product.

We give an unusual example of a product that will prepare the reader for thinking
about the category of open sets.

Example 1.3.6 (Open Sets: Limits are Intersections). Suppose ⇤ = {1, . . . ,n} is a finite
discrete category, i.e. it has n objects and the only morphisms are the identity morphisms.
Now let X be a topological space and let C = Open(X) be the category of open sets in X.
This is a category that has an object for each open set and a single morphism U ! V if
U ⇢ V . A functor F : ⇤ ! Open(X) is nothing more than a choice of n not necessarily
distinct open sets. A cone to F is an open set that includes into all the open sets picked
out by F. The limit of F is the largest possible open set that includes into all the open sets
picked out by F, i.e.

lim � F = \ni=1F(i).
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Example 1.3.7. Consider the following small category I along with some representation
F : I! Vect.

• //

✏✏

•

•

U A //

B
✏✏

V

W

By thinking about the definition, one can see that

lim � F ⇠= U.

Example 1.3.8 (Pullbacks). Consider the category J = Iop and a representation F : J !Vect.
•

✏✏
• // •

V

A
✏✏

W
B
// U

With some thought one can describe the limit set-theoretically as

lim � F ⇠= {(v,w) 2 V ⇥W|Av = Bw},

which is called the pullback. If U = 0, then we re-obtain the product of V and W and
one usually writes V ⇥W.

Example 1.3.9 (Equalizers and Kernels). Consider the following category K and an arbi-
trary functor F : K! D.

• //
// • X

g
//

f // Y

The limit of this diagram, which is also called the equalizer, is an object E along with a
map h that satisfies f � h = g � h.

E h // X
g
//

f // Y

If D = Vect and one sets g = 0, then the equalizer is the kernel. Thus, if one wants to
mimic kernels in data types lacking of zero maps and objects, equalizers can be substi-
tuted.

Finally, we finish with an example from representation theory.
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Example 1.3.10 (Invariants). Suppose that V is a vector space with an endomorphism
T : V ! V , i.e. a k[x]-module. Just as a group can be viewed as a category with
one object, a ring can be viewed as a category with multiplication corresponding to
composition of morphisms and addition corresponding to addition of morphisms, thus
such a category has extra structure. Thus the k[x]-module determined by V and T is
equivalent to a functor k[x]! Vect that sends the unique object ? to V and sends x to T .
The limit of such a functor is called the invariants of the action, i.e.

I = {v 2 V | T(v) = v}.

1.4 co-cones and colimits

Here we invoke the mirror principle to dualize the theory of cones and limits. In accor-
dance with usual terminology, we refer to these as cocones and colimits.

Definition 1.4.1 (Co-Cone). Given a diagram F : I! C, a cocone is a natural transforma-
tion from F to a constant diagram. In other words, it consists of an object C 2 C along
with a collection of maps �x : F(x) ! C such that these maps commute with the ones
internal to the diagram.

C

F(x)
F(g)

//

�
x

==

F(y)

�
y

aa

Similarly, there is a category of cocones to a diagram F, denoted CoCone(F). A colimit
is a distinguished object in this category.

Definition 1.4.2 (Colimit). The colimit of a diagram F is the initial object in the categoryCoCone(F). One should practice dualizing the explicit description of the limit in order
to understand the following diagram:

C 0

lim�! F

9! u

OO

F(x)
�
x

<<
� 0
x

EE

F(g)
// F(y)

�
y

bb

� 0
y

YY

Remark 1.4.3 (Glossary). The following terms are synonyms for colimits: direct limits,
inductive/injective limits, right roots, colim and lim�! are all used.
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To better understand the similarities and differences between limits and colimits, let
us re-examine the same examples in the previous section.

Example 1.4.4 (Coproducts). Consider the following index category and diagram:

• • F(i) F(j)

The colimit of this diagram is called the coproduct and is usually written

F(i)
a

F(j).

More generally, we define the product to be the limit of any diagram F : I! C indexed by
a discrete category and write

`
i F(i). Alternative notations for the coproduct, depending

usually on whether the target category is Set, Vect, Ab or Top include
M

i

F(i) and
X

i

F(i) and
G

i

F(i).

Example 1.4.5 (Open Sets: Colimits are Unions). Suppose ⇤ = {1, . . . ,n} is a finite
discrete category. Let C = Open(X) be the category of open sets in X. A functor
F : ⇤ ! Open(X) is a choice of n not necessarily distinct open sets. A cocone to F
is an open set that contains all the open sets picked out by F. The colimit of F is the
smallest possible open set containing all the open sets picked out by F, i.e. the union:

lim�! F = [ni=1F(i)

One should note that since the arbitrary union of open sets is still open one could have
worked over a larger indexing category ⇤.

Example 1.4.6 (Pushouts). Consider the following small category I and a representation
F : I! Vect.

• //

✏✏

•

•

U A //

B
✏✏

V

W

Contrary to the case of the limit, this one requires a bit more thought. Let’s start with
something that is not a cocone, but is nevertheless naturally built out of pieces of the
diagram.

U A //

B
✏✏

B�A
##

V

◆
V

✏✏
W ◆

W

//W � V
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This is not a cocone because the diagram does not commute since (Bu, 0) 6= (Bu,Au) 6=
(0,Au). We can force commutativity by forcing the equivalence relation [(Bu, 0)] ⇠

[(0,Au)] or equivalently [(Bu,-Au)] ⇠ [(0, 0)]. We thus conclude that

lim�! F = W � V/im(B�-A) �U = q � ◆WB = q � ◆VA �W = q � ◆W �V = q � ◆W

where q is the quotient map. One should note that this is clearly dual to the limit
computation in 1.3.8 with the added complication that whereas the limit is a sub-object,
the colimit is a quotient object.

Like before, if U = 0 then the pushout reduces to the coproduct of V and W and one
writes it as V �W.

Example 1.4.7. Consider the example J = Iop and corresponding representation F : J !Vect.
•

✏✏
• // •

V

A
✏✏

W
B
// U

One can see that
lim�! F ⇠= U.

Example 1.4.8 (Coequalizers and Cokernels). Consider the same category K as before
and a functor F : K! D.

• //
// • X

g
//

f // Y

The colimit, which is called the coequalizer, is an object E and map h such that h � f =
h � g.

X
g
//

f // Y h // E

If D = Vect and one sets g = 0, then the coequalizer is the cokernel. Thus if one wants
to mimic cokernels in data types lacking of zero maps and objects, coequalizers can be
substituted.

Example 1.4.9 (Co-invariants). As described in Example 1.3.10, a vector space V with an
endomorphism T is equivalent to a functor k[x] ! Vect. The colimit of this functor is
called the coinvariants of T , i.e.

C = V/ < Tv- v > .
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1.5 adjunctions

Adjunctions allow us to derive interesting relationships with almost no effort; they are
in essence dualities. For the individual interested in using category theory to model the
world, facile manipulations of adjunctions is essential. One often can transform a com-
plicated problem into a simpler one via an adjunction, thereby gaining a computational
payoff at the cost of abstraction. This is why using adjunctions between the functors
defined in Section 5.1 is one of the key technical skills every sheaf theorist must mas-
ter. Adjunctions also have played an essential role in the development of sheaf theory.
Finding an adjoint to the functor f! was one of the primary reasons that the notion of
a derived category was invented. Only by enlarging the domain could a new, adjoint
functor f! be defined. Here we introduce the general theory.

Definition 1.5.1. Suppose F : C ! D and G : D ! C are functors. We say that (F,G)
is an adjoint pair or that F is left adjoint to G (or equivalently G is right adjoint to
F) if we have a natural transformation ⌘ : idC ! G � F and a natural transformation to
✏ : F �G! idD such that

G
⌘G // GFG G✏ // G , F

F⌘ // FGF ✏F // F

We call ⌘ the unit of the adjunction and ✏ the counit of the adjunction.

There are about a half-dozen different, but equivalent, ways of defining an adjunction;
see [Mac98, p.81] for a list. One can just specify ⌘ and ask that it is universal,3 i.e. for
each x 2 C and for every y 2 D there is a map ⌘x : x ! GF(x) such that if we have
f : x! G(y), then there exists a unique map f 0 : F(x)! y with G(f 0) � ⌘x = f.

x
⌘
x //

f !!

GF(x)

✏✏
G(y)

Of course we could have just defined ✏ and asked that it is universal in a dual sense.4

The point is this: an adjunction is equivalent to specifying for every x 2 C and y 2 D a
natural bijection 'x,y

HomD(F(x),y) ⇠= HomC(x,G(y)).

The following theorem gives us an abstract criterion for determining when a functor
has an adjoint.

3 In other words, initial in a particular comma category; see [Mac98, p.56]
4 It is final in a different comma category.
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Theorem 1.5.2 (Freyd’s Adjoint Functor Theorem). Let D be a complete category and
G : D ! C a functor, then G has a left adjoint F if and only if G preserves all limits
and satisfies the solution set condition. This condition states that for each object x 2 C
there is a set I and an I-indexed family of arrows fi : c ! G(ai) such that every arrow
f : x! G(a) can be factored as x! G(ai)! G(a), where the first map is fi : x! G(ai)
and the second is G applied to to some t : ai ! a.

The solution set condition holds nearly all the time, so in practice one only needs
to check that G preserves limits, in which case G is a right adjoint (has a left adjoint).
Dually, for a functor to be a left adjoint it needs to preserve colimits.



2
T H E T H E O RY O F S H E AV E S A N D C O S H E AV E S

“Nous nous proposons d’indiquer sommairement comment les méthodes par
lesquelles nous avons etudié la topologie d’un espace peuvent être adaptées à
l’étude de la topologie d’une représentation.”1

— Jean Leray [Ler46]

In its most general form, the subject of this thesis involves the assignment of data to
subsets of a space X. This should sound like a very useful thing to do. After all, we have
in both pure and applied mathematics many an occasion to record data or solutions in a
local, spatially distributed way. Immediate questions arise: To which subsets should we
assign data? What should these assignments be used for? What are they to be called?

The author believes such assignments are to be called sheaves or cosheaves depending
on whether it is natural to restrict data from larger spaces to smaller spaces or by extend-
ing data from smaller spaces to larger ones. The evolution of these ideas deserves some
discussion and the eager historian should consult John Gray’s “Fragments of the History
of Sheaf Theory,” [Gra79] for a more thorough account. However, we outline three basic
opinions on what a sheaf (or cosheaf) is really:

• A sheaf is a system of coefficients for computing cohomology that weighs and
measures parts of the space differently. A cosheaf, in like manner, is a system of
coefficients for homology that varies throughout the space.

• A sheaf is an étalé space E along with a local homeomorphism ⇡ : E ! X. Anal-
ogously, a cosheaf is a locally-connected space D, called the display locale, that
maps to X [Fun95].

• A sheaf (or a cosheaf) is an abstract assignment of data — a functor — that further
satisfies a gluing axiom expressed by limits (or colimits).

1 “We propose to state briefly how the methods by which we have studied the topology of a space can be
adapted to the study of the topology of maps.”

18
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Historically, the system of coefficients perspective came first. In a 1943 paper Nor-
man Steenrod defined a new homology theory determined by assigning abelian groups
directly to points of a space X and group isomorphisms to (homotopy classes of) paths
between points [Ste43]. This theory was vastly generalized in 1946 by Jean Leray where
a faisceau (or sheaf) was defined to be a way of assigning modules to closed sets in an
inclusion-reversing way.

V //

  

X

W

>> F(V) F(X)oo

{{
F(W)

cc

Although this strengthened the abstract assignment perspective, Leray was still con-
cerned with the cohomological ideas developed by Georges de Rham, Kurt Reidemeister
and Hassler Whitney.

By the early 1950s, Henri Cartan and his seminar revised Leray’s definition of a sheaf
to consist of a local homeomorphism ⇡ : E ! X. One could re-obtain the assignment
perspective by attaching to each open set U the set of sections of this map over U:

U {s : U! E |⇡ � s(x) = x}

One plausible explanation for using open sets is provided by the open pasting lemma,
which states2 that if X = [Ui is a (potentially infinite) union of open sets equipped with
continuous sections si : Ui ! E that agree on overlaps, then the set-theoretically defined
section s : X ! E will also be continuous. If closed sets are used, then this gluing
argument only works for covers consisting of finitely many closed sets.

Finally, the Weil conjectures in algebraic geometry motivated the introduction of a
more general notion of a topology and cohomology. Following suggestions of Jean-Pierre
Serre, the domain of a sheaf was abstracted by Alexander Grothendieck from subsets
U ✓ X to collections of mappings U ! X that satisfy certain conditions reminiscent of
an open cover [MM92]. Defining a sheaf on a Grothendieck topology ushered in the
abstract formulation of sheaves using categories, functors and equalizers (limits) found
in Michael Artin’s 1962 Harvard notes on the subject [AoM62].

All three of these models are useful for thinking about sheaves and cosheaves, but
the abstract assignment model is powerful and elegant enough to capture the other two.
Moreover, whereas the étalé space perspective can be adapted from sheaves of sets to
sheaves of more general data types, the display space perspective on cosheaves appears

2 Munkres calls this the “local formulation of continuity” in theorem 18.2(f) [Mun00]. Munkres reserves
the term “pasting lemma” for the closed set version, which is stated directly afterwards as theorem 18.3.
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to only be valid for set-valued cosheaves and cannot be adapted more generally. In
particular, since homology requires working with abelian groups or vector spaces, the
display space model and the homology perspective describe different types of cosheaves.
Thus, the only vantage point capable of reasoning about cosheaves in a unified way is
the functorial perspective, where the dualities of category theory can be employed.

In this section, we provide the general definition of sheaves and cosheaves, but restrict
ourselves to considering open sets and covers in a topological space. We phrase things
using limits and colimits that take the shape of a simplicial complex: the nerve of a cover.
The sheaf or cosheaf condition says that the value of this limit or colimit is independent
of the cover chosen. To make the limits and colimits over covers more computable,
we reduce to equalizers and coequalizers. We then specialize to the data type of vector
spaces, where Čech homology for a cover is introduced. This evolves into a discussion of
why singular zeroth homology defines a cosheaf. As set up for the discussion on general
differences between sheaves and cosheaves, we consider how refinement of covers plays
with the sheaf and cosheaf property.

2.1 the general definition

In elementary mathematics one learns that functions are devices for assigning points in
one set to points in another. Motivated by differential calculus, one learns properties
of functions on metric and topological spaces such as continuity. In its simplest form,
continuity of a function states that if f : X! Y is a function and {xn}

1
n=1 is a sequence of

points in X converging to some point x, then

lim
n!1

f(xn) = f( lim
n!1

xn) = f(x),

i.e. f commutes with the limits one learns in analysis. Moreover, there is an indepen-
dence result: The value f(x) is independent of which sequence one used to approximate
the point x.

The exact analogous situation occurs in category theory. A functor assigns objects and
morphisms of one category to objects and morphisms in another. If a functor commutes
with the categorical notion of a limit, then we also say that the functor is continuous.
However, since there are so many different shapes of limits in arbitrary categories, this
notion is too restrictive. A sheaf is a functor that commutes with limits coming from
open covers. Applying the duality principle in category theory, a cosheaf is a functor
that preserves colimits coming from open covers.

Definition 2.1.1. Let X be a topological space and U an open set in X. An open cover of
U is a collection of open sets U := {Ui}i2⇤ whose union is U.
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Pavel Alexandrov introduced in 1928 a method3 for associating to every open cover an
abstract simplicial complex [Ale28]. We will use these shapes to model our limits and
colimits of interest.

Definition 2.1.2. Suppose U := {Ui}i2⇤ is an open cover of U. We can take the nerve
of the cover to get an abstract simplicial complex N(U), whose elements are subsets
I = {i0, . . . , in} for which UI := Ui

0

\ · · · \Ui
n

6= ;. We can regard N(U) as a category
whose objects are the finite subsets I such that UI 6= ; with a unique arrow from I ! J
if J ✓ I. Since our intersections are only finite, and the finite intersection of open sets is
open, we get natural functors

◆U : N(U)! Open(X) or ◆opU : N(U)op ! Open(X)op.

Remark 2.1.3. Sometimes we will use the notation N(U), NU and N interchangeably,
depending on the context.

figure 1: Covers and Their Nerves

In Figure 1 we have drawn two different arrangements of open sets and their corre-
sponding nerves, which we have represented graphically to the right. We have added
points to each open set to make it clear how many open sets are in the cover. Note that
in general, there is nothing to prevent a disconnected open set from being marked by a
single label.

The nerve is purely an algebraic and combinatorial model for the cover — it need
not respect the topology of the union. However, the nerve theorem of Leray and Bor-
suk [Ler45, Bor48] states that if the intersections are contractible then the nerve and the
union have the same homotopy type. The example on the left in Figure 1 gives a positive
example of the nerve lemma, whereas the example on the right gives a negative one.

The definition of a sheaf or cosheaf requires the synthesis of covers and data. We now
introduce the functor that assigns data to open sets.

3 In Definition 8.2.16 we consider the “correct” generalization of the nerve.
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Definition 2.1.4 (Pre-Sheaf and Pre-Cosheaf). A pre-sheaf is a functor F : Open(X)op ! D
and a pre-cosheaf is a functor bF : Open(X) ! D. If V ⇢ U, then we usually write the
restriction map as ⇢FV ,U : F(U) ! F(V) and the extension map as r

bF
U,V : bF(V) ! bF(U).

Often we omit the superscript F or bF.

If one imagines the pre-cosheaf that associates a copy of the field k to every connected
component of an open set, then the following diagrams of vector spaces emerge from
Figure 1:

k

k

::

✏✏

k

dd

✏✏

k

dd

OO

::

zz

✏✏

$$
k k

k

dd ::

k k3oo // k

We will examine various ways for computing the colimits of these diagrams explicitly.
Since the colimits occur over simplicial complexes, we introduce a structure theorem that
allows us to use coequalizers. In the vector space case, this reduces to linear algebra —
the colimit will be H0 of a suitable chain complex.

We want to express the fact that since the colimit of a cover N(U) ! Open(X) is just
the union U = [Ui, the data associated to U should be expressible as the colimit of data
assigned to the nerve. Moreover, this should be independent of which cover we take.
Examples where this does not occur are given in Example 2.5.1 and Example 2.5.2.

Definition 2.1.5 (Sheaves and Cosheaves). Suppose F is a pre-sheaf and bF is a pre-cosheaf,
both of which are valued in D. Suppose U = {Ui} is an open cover of U. We say that F is
a sheaf on U if the unique map from F(U) to the limit of F � ◆opU , written

F(U)! lim �
I2N(U)

F(UI) =: F[U],

is an isomorphism. Similarly, we say bF is a cosheaf on U if the unique map from the
colimit of bF � ◆U to bF(U), written

bF[U] := lim�!
I2N(U)

bF(UI)! bF(U),
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is an isomorphism. We say that F is a sheaf or bF is a cosheaf if for every open set U and
every open cover U of U, F(U) ! F[U] or bF[U] ! bF(U) is an isomorphism. For a catchy
slogan, we say

On an open set (co)sheaves turn different covers into isomorphic (co)limits.

Remark 2.1.6 (Stable Under Finite Intersection). Most authors do not introduce the nerve
as any part of the definition of a sheaf or cosheaf. Instead, some will require that the
cover U is “stable under finite intersection,” i.e. if Ui,Uj 2 U, then Ui \Uj 2 U. This
allows those authors to just consider the limit or colimit over the cover and not over some
auxiliary construction, like we have done. This works because one can take any cover
and then add the intersections after the fact, but this tends to be done unconsciously and
without any warning to the reader. Our approach is equivalent to that approach, but we
believe it has some added benefits.

We have not stated any requirements on the data category D, but in order to even
parse the statement of the (co)sheaf axiom we require that the (co)limits coming from
such covers exist. For the most part, we will work in categories where all limits and
colimits exist. In analogy with analysis, a category where the limit of any diagram
F : I! D exists is called complete. Similarly, if the colimit of an arbitrary diagram exists,
we say D is co-complete. The category Vect is both complete and co-complete.

A particular consequence of the axiom is that for a sheaf, F(;) must be the limit over
covers of the empty set, but since there are no such covers4 this is the limit over the
empty diagram, i.e. Cone(;) = D, whose terminal object is the terminal object of D.
Similarly, for a cosheaf bF(;) must be the initial object in D. For D = Vect the initial and
terminal objects coincide with the zero vector space.

It is true that if D has pullbacks (see Example 1.3.8 in Section 1) and a terminal object
then it has all finite limits. The dual statement that having an initial object and pushouts
(see Example 1.4.6) implies finitely co-complete is also true. Thus, if one focuses on
sheaves and cosheaves valued in vect (the category of finite dimensional vector spaces
and linear maps), then the collection of covers of U one can consider must be restricted.
In particular, if the sheaf or cosheaf axiom holds for open covers with two sets, then we
can only guarantee that it holds for covers with finitely many open sets. As a purely
philosophical point, one wonders whether working with the cover of the complement of
the Cantor set given by

U = {(
3k+ 1

3n
,
3k+ 2

3n
) ⇢ [0, 1]|0 6 k 6 3n-1 - 1, 0 6 n < 1}

4 Alternatively one argues that the empty set covers itself and hence the value there is chosen to be the
initial/terminal object of the category D.
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would ever be computationally tractable. One might wish to systematically revise the
notion of a “cover,” and this would lead to the notion of a Grothendieck site, which we
do not address here.

We now examine the axioms just for covers with only two open sets.

figure 2: Sheaves and Cosheaves of Functions

Example 2.1.7 (Cover by Two Sets). Suppose D = Set, and suppose U = {U1,U2} is a
cover of U. The sheaf condition says that

F(U) ⇠= {(s1, s2) 2 F(U1)
Y

F(U2)|⇢U
12

,U
1

(s1) = ⇢U
12

,U
2

(s2)} =: F[U],

i.e. F(U) lists the set of consistent choices of elements from F(U1) and F(U2). In particular,
F[U] is a sub-object of the product of F(U1) and F(U2). For an example, one can let F be
the assignment

U {f : U! R | continuous}.

The sheaf axiom then says in order for two functions (or sections) s1 = f1 : U1 ! R and
s2 = f2 : U2 ! R to determine an element in U = U1 [U2 it is necessary and sufficient
that the functions f1(x) and f2(x) agree on the overlap U12 = U1 \U2.

The cosheaf condition for D = Set is slightly strange. It says that

bF(U) ⇠= (bF(U1)
a
bF(U2))/ ⇠

s1 ⇠ s2 , 9s12 s1 = rU
1

,U
12

(s12) s2 = rU
2

,U
12

(s12).

In contrast to the sheaf case, the notion of consistent choices no longer applies for
cosheaves, because it requires thinking in terms of quotient objects — something hu-
man beings are not accustomed to. However, a useful analogy is that one must subtract
out or identify those elements that might be counted twice because they come from the
intersection. For an example similar in spirit to the sheaf of real-valued functions, we
begin by considering the pre-cosheaf of compactly supported functions gotten by the
assignment

U {f : U! R | continuous and compactly supported}.
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Extending by zero provides the extension map and identifying the two copies of a func-
tion whose support is contained in U12 = U1 \U2 prevents double counting on U. How-
ever, this is not all that the cosheaf axiom requires. Any compactly supported function
should appear as one supported in U1 or U2, but this is not always true. Some com-
pactly supported functions are not compact when restricted to any particular open set
in a cover. Thus, this pre-cosheaf is not a cosheaf.

The reader familiar with partitions of unity will realize that if X a paracompact Haus-
dorff space then we can express any compactly supported function f(x) defined on all
of U as a sum of compactly supported functions on U1 and U2. By taking a partition of
unity subordinate to the cover U we get two functions �1(x) and �2(x) such that

f(x) = f1(x) + f2(x) where f1(x) := �1(x)f(x) and f2(x) := �2(x)f(x).

By carrying out the colimit in a data category equipped with sums, such as D = Vect ofAb, then compactly supported functions do define a cosheaf valued there.
More generally, if D = Vect, then the cosheaf axiom for the cover says the sequence

bF(U12)! bF(U1)� bF(U2)! bF(U)! 0

is exact, where the maps are (-rU
1

,U
12

, rU
2

,U
12

) and rU,U
2

+ rU,U
1

. Dually, the sheaf axiom
says the dual sequence

0! F(U)! F(U1)⇥ F(U2)! F(U12)

is exact, where the second map is ⇢U
12

,U
2

+ ⇢U
12

,U
1

and the first map is (-⇢U
1

,U, ⇢U
2

,U).

2.2 limits and colimits over covers : a structure theorem

The sheaf and cosheaf axioms as stated are meant to emphasize that if one is comfortable
with the operations of limits and colimits, then one is already comfortable with sheaves
and cosheaves. However, the limits and colimits considered in Definition 2.1.5 have a
special structure. This structure comes from the fact that the indexing category — the
nerve — is a simplicial complex.

The first observation one can make is that for any functor F : N(U)op ! D the limit can
be thought of as “sitting inside” the product over the vertices — the vertices correspond-
ing to the elements of the cover through the nerve construction. Dually, the colimit of
a functor bF : N(U) ! D can be thought of as a quotient of the coproduct of the functor
over the vertices. Said using formulas, this is

lim � F ,!
Y

F(i)
a
bF(i)⇣ lim�!

bF.
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The way to see this is to note that any cone or cocone’s morphism must factor through a
vertex. However, the difference between the limit or colimit from the functor’s aggregate
value on vertices is measured by edges in the nerve. This is a reflection of a more general
theorem, which we now state.

Theorem 2.2.1. A category D has all (co)limits of an appropriate size if it has all
(co)products and (co)equalizers of same such size. Here “size” corresponds to the
cardinality of the indexing category of the (co)limit in question.

Proof (Sketch). One should consult [Awo10, Prop. 5.22-3] for a complete proof. To give
the reader the idea, one can compute the limit of F : I! D by taking the product over all
the objects x 2 I and separately the product over all morphisms in the indexing category
I. The limit is isomorphic to the equalizer going from the first product to the latter, i.e.

lim � F //
Q

x2I F(x) //
//Q

x!x 0 F(x 0) .

By dualizing, one can prove the analogous result for colimits.

This theorem gives us effective means for computing limits and colimits for general
data types. We now specialize this result to the limits and colimits pertinent to sheaves
and cosheaves.

2.2.1 Rephrased as Equalizers or Co-equalizers

The method outlined in Theorem 2.2.1 for computing limits and colimits contains too
much redundant information for the case I = N(U)op. As such, we state the precise,
simplified formulation here. The sheaf and cosheaf axioms can be rephrased as saying
that the following sequences

F(U) e //
Q

F(Ui)
f+
//

f- //Q
i<j F(Ui \Uj)

`
i<j
bF(Ui \Uj)

g-
//

g+ //`bF(Ui)
u // bF(U)

are an equalizer and a co-equalizer respectively.

Exercise 2.2.2. Prove that the limit or colimit over the nerve of a cover can be determined
after considering only the elements of the cover and their pairwise intersections. Do this
by observing that the limit or colimit over the 1-skeleton5 of the nerve defines a cone

5 In higher homotopy analogs of sheaves and cosheaves one works over the whole Čech tower of a
cover [DI01, Dou07, GG].
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or cocone over the whole nerve and employing universal properties. Then apply the
equation from Theorem 2.2.1 and its dual version to prove that the re-written axioms of
Section 2.2.1 and Section 2.2.2 are correct.

To describe the maps explicitly requires some work. First, we choose an ordering of
the indexing set of the cover U = {Ui}i2⇤. To specify a map to a product it suffices
to specify maps to each factor of the product. Similarly, maps from a coproduct are
specified by maps from each factor. This is summarized by the identities

Hom(X,
Y

i

Yi) ⇠=
Y

i

Hom(X, Yi) and Hom(
a

i

Xi, Y) ⇠=
Y

i

Homi(Xi, Y).

To define the maps e and u we declare ei := ⇢U
i

,U and ui := rU,U
i

. For the maps f± and
g± we define for each pair i < j the maps

f+ij := ⇢ij,j � ⇡j f-ij := ⇢ij,i � ⇡i g+ij := rj,ij � ◆ij g-ij := ri,ij � ◆ij

where ⇡i :
Q

F(Ui) ! F(Ui) is the natural projection and ◆ij : bF(Uij) !
`bF(Uij) is the

natural inclusion.
The reader might find it helpful to think of the maps in between the products as being

represented by matrices. In the case of a cover with three elements U = {U1,U2,U3} all
of whose pairwise intersections are non-empty, we can write

f+ =

2

64
⇤ ⇢12,2 ⇤
⇤ ⇤ ⇢13,3

⇤ ⇤ ⇢23,3

3

75 f- =

2

64
⇢12,1 ⇤ ⇤
⇢13,1 ⇤ ⇤
⇤ ⇢23,2 ⇤

3

75 .

The equalizer condition now reads that f+(s1, s2, s3) = f-(s1, s2, s3), i.e.

(⇢12,2(s2), ⇢13,3(s3), ⇢23,3(s3)) = (⇢12,1(s1), ⇢13,1(s1), ⇢23,2(s2)).

2.2.2 Rephrased as Exactness

If D = Vect, then we can add and subtract maps and look for kernels and cokernels
instead of equalizers and co-equalizers. The sheaf and cosheaf axioms then reduce to
linear algebra. The modified axioms now read as

0 // F(U) //
Q

F(Ui)
d0 //

Q
i<j F(Ui \Uj)
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L
i<j
bF(Ui \Uj)

@
1 //
LbF(Ui) // bF(U) // 0

where d0 is the matrix whose rows are parametrized by pairs i < j and whose columns
are parametrized by k with entries given by d0

ij,k = [k : ij]⇢ij,k where

[k : ij] =

8
><

>:

0 if k 6= i 6= j

1 if k = j

-1 if k = i

The matrix @1 is similarly defined except that the rows are indexed by k and columns
are indexed by pairs i < j with entries (@1)k,ij = [k : ij]rk,ij. Thus the sheaf axiom says
that F(U) ⇠= ker(d0) and the cosheaf axiom says that bF(U) ⇠= coker(@1).

In our example of a three set cover U = {U1,U2,U3} all of whose pairwise intersections
are non-empty, the definition of d0 corresponds to taking f+ - f-, i.e.

d0 = f+ - f- =

2

64
-⇢12,1 ⇢12,2 0

-⇢13,1 0 ⇢13,3

0 -⇢23,2 ⇢23,3

3

75

where each of the ⇢ij,k’s need to be filled in with some matrix representative of that linear
map. The kernel is then identified with F[U].

2.3 ˇ

cech homology and cosheaves

In Section 2.2.1 we rephrased the limits and colimits coming from covers as equalizers
and coequalizers. For the data category D = Vect we showed how to reinterpret this as
an exact sequence. This perspective is indicative of a deeper and more computational
idea, namely that of homology. We now show how to associate to any pre-cosheaf6 of
vector spaces bF and an open cover U = {Ui}i2⇤ a complex of vector spaces whose zeroth
homology computes bF[U]. This allows us to compute the homology of data.

Definition 2.3.1 (Čech Homology). Given a pre-cosheaf of vector spaces bF and an open
cover U = {Ui}i2⇤, we define the Čech homology on U to be the homology of the complex

(Č•(U;bF),@•) where Čp(U;bF) :=
M

|I|=p+1

bF(UI) for I 2 N(U).

6 Or pre-sheaf, but we’ll leave it to the reader to dualize.
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By choosing an ordering on the index set ⇤, we define the differential by extending the
formula defined on elements sI 2 bF(UI) by linearity, i.e.

@p : Cp(U;bF)! Cp-1(U;bF) @p(sI) :=
pX

k=0

(-1)kr
U
(k)
I

,U
I

(sI),

where the symbol U(k)
I = Ui

0

\ . . .\Ui
k-1

\Ui
k+1

\ . . . Ui
p

indicates the intersection that
omits the kth open set. Thus we can define by the usual formula the pth Čech homology
group

Ȟp(U;bF) :=
ker@p

im@p+1
i.e. Hp(Č•(U;bF)).

To guarantee that Čech homology is well-defined we verify the following lemma:

Lemma 2.3.2. The differential @ in the Čech complex for a cover U and a pre-cosheaf bF
of vector spaces satisfies @p � @p+1 = 0.

Proof. The combinatorial nature of the nerve of a cover guarantees that @2 = 0. Specifi-
cally, there are two ways of going between incident simplices of dimension differing by
two. Thus, we get the following diagram of open sets and data:

U
(j,k)
I

U
(j)
I

==

U
(k)
I

aa

UI

bb <<

OO
bF(U(j,k)

I )

bF(U(j)
I )

::

bF(U(k)
I )

dd

bF(UI)

dd ::

OO

Let’s follow a typical element sI 2 bF(UI) through the diagram on the right upon
applying the formula @ � @. First note that the fact that bF is a pre-cosheaf implies that the
square commutes, i.e.

r
U
(j,k)
I

,U(j)
I

� r
U
(j)
I

,U
I

(sI) = r
U
(j,k)
I

,U(k)
I

� r
U
(k)
I

,U
I

(sI) = r
U
(j,k)
I

,U
I

(sI).

The first application of @ yields (-1)jr
U
(j)
I

,U
I

(sI) and (-1)kr
U
(k)
I

,U
I

(sI) as just two com-
ponents in the formula for @(sI). Assuming j < k and applying the definition of the
boundary map to elements in bF(U(j)

I ) implies that we must actually delete the k- 1st en-
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try of I- {j} since removing j has caused everything above j to shift down in the ordered
list. Thus the image of @2(sI) in bF(U(j,k)

I ) is

(-1)k-1(-1)jr
U
(j,k)
I

,U
I

(sI) + (-1)k(-1)jr
U
(j,k)
I

,U
I

(sI) = 0.

Example 2.3.3. Consider the covers in Figure 1. The pre-cosheaf we described there
assigned to each connected component of an open set a copy of the field k. First we
consider the cover on the left of Figure 1 with three open sets. We label the three vertices
of the nerve, starting with the bottom left one and working counter-clockwise, x,y and
z respectively. The Čech complex takes the form

kxyz
@
2 // kxy � kxz � kyz

@
1 // kx � ky � kz // 0

where, using the lexicographic ordering for a basis, the matrix representatives for @2 and
@1 take the following form:

@2 =

2

64
1

-1

1

3

75 @1 =

2

64
-1 -1 0

1 0 -1

0 1 1

3

75

One can easily verify that the ker@1 = im@2 and consequently Ȟ1 = 0. Furthermore,
Ȟ0

⇠= k, which happens to reflect that the union has one connected component. Similarly,
one can consider the cover at the right of Figure 1. The Čech complex for this cover and
the same pre-cosheaf is as follows:

k3
@
1 // k2 // 0 where @1 =

"
-1 -1 -1

1 1 1

#

Clearly Ȟ0
⇠= k, whose dimension agrees with the number of connected components of

the union, but also Ȟ1
⇠= k2, which witnesses the presence of two holes in the union.

One can dually define Čech cohomology with coefficients valued in a pre-sheaf F. The
discussion of Section 2.2.2, along with the examples just presented, can be interpreted as
saying a pre-sheaf F or pre-cosheaf bF is a sheaf or cosheaf if and only if

F(U) ⇠= Ȟ0(U; F) or Ȟ0(U;bF) ⇠= bF(U).

for any choice of cover U of U.
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We would like to use this isomorphism to supply examples of sheaves and cosheaves
from standard machinery in algebraic topology. Suppose one has an independent notion
of homology, such as singular homology, and one can show it is isomorphic to Čech
homology for suitably fine covers (see Section 2.4 to see why fineness matters) on nice
spaces, then one can also define a cosheaf using those values. To make this rigorous, and
to also provide a useful criterion for proving when a pre-cosheaf is a cosheaf, we recall
a theorem:

Theorem 2.3.4. Suppose bF is a pre-cosheaf, then bF is a cosheaf if and only if the following
the following two properties hold

• For all open sets U and V the following sequence is exact

bF(U\ V)! bF(U)� bF(V)! bF(U[ V)! 0.

The first morphism is (-rU,U\V , rV ,U\V) and the second is rU[V ,U + rU[V ,V .

• If {U↵} is directed upwards by inclusion, i.e. for for every pair U↵ and U� there
exists U� containing both, then the canonical map

lim�!
↵

bF(U↵)! bF([U↵)

is an isomorphism.

Dually, turning arrows around and using inverse limits gives a useful criterion for deter-
mining when a pre-sheaf is a sheaf.

Proof. Using induction one can prove that the cosheaf property for two sets implies the
cosheaf property for finitely many sets (see [Bre97, p. 418] for a proof). We now show
that this implies the cosheaf axiom for arbitrary covers. Suppose {U↵}↵2⇤ is a cover
indexed by a potentially large, but ordered set ⇤. For each finite subset I ⇢ ⇤ we know
that M

↵<�2I

bF(U↵,�)!
M

↵2I

bF(U↵)! bF(
[

↵2I
U↵)! 0

is exact. We know that the collection of finite subsets I forms a directed system and that
in Vect direct limits preserve exactness. As such we have that

lim�!
I

M

↵<�2I

bF(U↵,�)! lim�!
I

M

↵2I

bF(U↵)! lim�!
I

bF(
[

↵2I
U↵)! 0
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is exact as well, but by using the second property and the fact that the direct limit of the
I’s is ⇤ we have M

↵<�2⇤

bF(U↵,�)!
M

↵2⇤

bF(U↵)! bF(
[

↵2⇤
U↵)! 0

is exact. This proves the reverse direction. The other direction is clear.

This theorem then provides us with a useful example of a cosheaf that we have implic-
itly used to generate examples. We now make this example explicit.

Example 2.3.5. The assignment to an open set U the 0th singular homology of U

U H0(U;k)

is a cosheaf. This follows from the fact that the singular chain complex (see later for a
definition) C•(-;k) can be defined for any subset U of X and homology commutes with
direct limits, thus the second property of the theorem holds. The first property in the
theorem follows from exactness at the last two spots in the Mayer-Vietoris sequence:

H1(U\ V ;k) // H1(U;k)�H1(V ;k) // H1(U[ V ;k)

// H0(U\ V ; F) // H0(U;k)�H0(V ;k) // H0(U[ V ;k) // 0

The moral from this example is that, in essence,

Any functor that satisfies Mayer-Vietoris is a cosheaf.

2.4 refinement of covers

We have defined the sheaf and cosheaf axioms for a cover U. The coarsest possible cover
of an open set U is the cover with one element {U}. Thus, one way of interpreting the
sheaf and cosheaf axiom is that F[U] and bF[U] are independent of the cover chosen. A
logical question to ask is if the axiom holds for some cover, but not all, then for what
other covers does the axiom hold? To answer this question, we review some relevant
concepts.

Definition 2.4.1 (Refinement of Covers). Suppose U and U 0 are covers of U, then we say
that U 0 refines U if for every U 0i 2 U 0 there is a Uj 2 U and an inclusion U 0i ! Uj. Note
that every cover refines the trivial cover {U}.
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Definition 2.4.2. The refinement relation endows the collection of covers of U with the
structure of a category Cov(U), whose objects are covers U with a unique morphism
U 0 ! U if the former refines the latter.

Note that if U 0i
1

! Uj
1

and U 0i
2

! Uj
2

, then U 0i
1

\U 0i
2

! Uj
1

\Uj
2

. So a refinement
induces a functor between nerves, but it depends on which inclusions were chosen.

Open(X)
N(U 0)

99

// N(U)

ee
Open(X)op

N(U 0)op

77

N(U)op

ff

oo

The next lemma shows that these choices don’t matter on the level of limits and colim-
its for pre-sheaves and pre-cosheaves.

Lemma 2.4.3. Let bF and F be a pre-cosheaf and a pre-sheaf respectively. Suppose U 0

refines another cover U of an open set U. Then there are well-defined maps

bF[U 0]! bF[U] and F[U]! F[U 0],

i.e. we get functors bF : Cov(U)! D and F : Cov(U)op ! D.

Proof. We’ll detail the proof for a pre-cosheaf bF since the case for pre-sheaves can be
found in the literature or obtained here via dualizing appropriately. A refinement
U 0 ! U defines a natural transformation bF � ◆U 0 ) bF � ◆U. The colimit defines a natu-
ral transformation from bF � ◆U to the constant diagram bF[U]. Since the composition of
natural transformations is a natural transformation, this induces a cocone bF � ◆U 0 ) bF[U]
which, by the universal property of the colimit, defines a unique induced map there, i.e.

bF � ◆U 0 ) bF � ◆U ) bF[U] implies 9!bF[U 0]! bF[U].

However, if in choosing the inclusions for the refinement we had made a different set of
choices, U 0i ! Uk rather than Uj, then a priori we might have expected different maps
bF[U 0] ! bF[U]. Let us show this choice does not matter. If there is a choice, then we can
take U 0i ! Uj \ Uk as a common refinement. As a consequence of bF being a functor
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from the open set category, the different maps to the colimit must agree, as they factor
through whatever is assigned on the intersection, i.e. the following diagram commutes:

bF(Uj)

✏✏
bF(U 0i) //

44

**

bF(Uj \Uk)

99

%%

// bF[U]

bF(Uk)

OO

Corollary 2.4.4. If bF is a cosheaf or F is a sheaf for the cover U 0, then it is a cosheaf or
sheaf for every cover it refines.

Proof. Suppose we have a series of refinements

U 0 ! U! {U}.

To say that bF or F is cosheaf or sheaf for U 0 is to say that the following induced maps are
isomorphisms:

bF[U 0] //

⇠=

%%
bF[U] // bF(U) F(U) //

⇠=

%%
bF[U] // bF[U 0]

However, by functoriality, the factored maps must themselves be isomorphisms, i.e.

bF[U]
⇠= // bF(U) F(U)

⇠= // F[U] .

We will make use of this corollary as we begin to consider sheaves and cosheaves on
spaces where there is a finest cover. Checking the sheaf or cosheaf axiom there then
guarantees it for all covers.

2.5 generalities on sheaves and cosheaves

Sheaves have proved to be highly successful tools in pure mathematics over the past
60-70 years. This is largely because sheaves provide precise mechanisms for determin-
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ing global unknowns from local knowns. These mechanisms are greatly enhanced by
considering the operations such as Hom and ⌦ on sheaves, as well as the pushforward
and pullback of a sheaf along a map, which we define in Section 2.5.2. Some of these op-
erations are only available after applying a certain repair to turn a presheaf into a sheaf,
also known as sheafification, which we define in Section 2.5.1 after some preliminary
discussion of examples.

One would like to know if a similar story is true for cosheaves. After all, any functor
bF : Open(X) ! D is exactly equivalent to specifying a functor F : Open(X)op ! Dop.
However, certain asymmetries prevent such an observation from being as useful as one
might hope. These asymmetries are outlined in Section 2.5.3 and obstruct the use of
Grothendieck’s version of sheafification to define an analogous cosheafification. How-
ever, we prove that such a device must exist in Section 2.5.4 without knowing a particular
construction.

2.5.1 Pre-sheaves and their Associated Sheaves

Sheaves are fundamentally local structures. Informally stated, a pre-sheaf can fail to be
a sheaf in two independent ways:

• Non-Local: If a pre-sheaf has a section s 2 F(U) that cannot be constructed from
sections over smaller open sets in U — a cover of U, for example — then F fails to
be a sheaf.

• Inconsistent: If a pre-sheaf has a pair of sections s 6= t 2 F(U) such that when
restricted to every smaller open set they define the same section, then F fails to be
a sheaf.

Let’s illustrate both of these failures with two examples.

Example 2.5.1 (Non-local). Let F be a presheaf of vector spaces over the real line R,
defined as follows:

F(U) =

8
<

:
k if (-1, 1) ⇢ U

0 o.w.

In particular, F assigns the zero vector space to every open ball Br(x) centered at x 2 R

with r 6 1/2. This collection of balls covers the real line thus if F were a sheaf, then
F(R) = 0, but it is the vector space k instead.

An incarnation of this example, depicted in Figure 3, is the pre-sheaf that assigns to
every open set U, the first cohomology of the inverse image of U under a map f : S1 ! R,
i.e.

U H1(f
-1(U);k).
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figure 3: Cohomology Pre-sheaf is Non-Local

Example 2.5.2 (Inconsistent). Let F be a presheaf of sets over the real line R, defined as
follows:

F(U) =

8
<

:
{a,b} if U = X

{?} o.w.

This presheaf is like two friends that agree on every possible political issue, but still
belong to two different political parties.

Fortunately, there is a general method of repair that can make any presheaf F into a
sheaf eF. Although this method modifies the value of F on open sets, it leaves at least one
feature of the presheaf unchanged. This is the stalk of the presheaf.

Definition 2.5.3. Let F be a pre-sheaf on a topological space X and x 2 X a point. The
stalk of F at x is the direct limit of F over open sets U containing x:

Fx := lim�!
U3x

F(U)

The stalk is the “local value” of a presheaf at x. Notice that every element t 2 F(U) with
x 2 U has an associated value tx, which is the image of t in the direct limit.

Remark 2.5.4. Since F only assigns data to open sets, one often uses the direct limit
construction to assign data to arbitrary sets of X; the stalk is just a special example of
this principle.
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Now we introduce the procedure for turning an arbitrary presheaf of sets, vector
spaces or groups into a sheaf of the same type.

Sheafification

We begin our introduction to the sheaf associated to a presheaf with a careful introduc-
tion to products and disjoint unions, following [DL12].

Definition 2.5.5 (Disjoint Unions and Products in Set). Suppose {Xs}s2S is a family of
sets indexed by S. The disjoint union is a union that tracks the indexing set:

G

s2S
Xs :=

[

s2S
Xs ⇥ {s}

The product can be written as a set of maps:
Y

s2S
Xs := {f : S!

G

s2S
Xs | f(s) 2 Xs 8s 2 S}

The projection maps
⇡s 0 :

Y

s2S
Xs ! Xs 0

are defined by evaluation ⇡s 0(f) = f(s 0).

Definition 2.5.6 (Sheafification). Let F : Open(X)op ! Set be a presheaf of sets and let
Fx denote the stalk of F at x. Now for each open set U, form the product

Q
x2U Fx. The

sheafification eF of F assigns to every open set U the functions in
Q

x2U Fx that “locally
extend,” i.e.

eF(U) := {s 2
Y

x2U
Fx | 8x 2 Us(x) 2 Fx , 9V 3 xV ⇢ Ut 2 F(V) s.t. ty = s(y) 8y 2 V}

There is a natural transformation ✓ : F! eF that takes every element s 2 F(U) to the map
s : x 2 U 7! sx 2 Fx. In particular, ✓x : Fx ! eFx is an isomorphism.

One can summarize sheafification more elegantly in the language of categories. Since
every sheaf is also a pre-sheaf, we have an inclusion functor

◆ : Shv(X; Set) ,! Fun(Open(X)op, Set) =: PreShv(X; Set)
that has a left adjoint, i.e. there is a universal natural transformation ✓ : idPreShv ! ◆�g(-),
see Section 1.5 for a reminder. Such a subcategory is called reflective. This guarantees,
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for example, that if F is an arbitrary pre-sheaf and G is a sheaf regarded as a pre-sheaf
G = ◆(G), then we have the following universal property:

eF

9!
✏✏

F

✓
F

>>

' // ◆(G)

Pulling back along ✓F induces the natural isomorphism of Hom-sets:

HomShv(eF,G) ⇠= HomPreShv(F, ◆(G))

2.5.2 Grothendieck’s Operations

What makes sheaf theory such a powerful machine is that there are many natural oper-
ations on sheaves and well understood adjunctions between these operations. However,
many of these operations only exist with the aid of sheafification. In particular, there are
the following six operations, grouped into three adjoint pairs, the third of which exists
only in a suitable enlargement of the category of sheaves.

(f⇤, f⇤) (⌦,Hom) (f!, f!)

Here we will consider only four out of the six in order to forego this extra difficulty of
“enlarging” the category of sheaves.

Definition 2.5.7 (Pushforward Sheaf). Let f : Y ! X be a continuous map and let G be a
sheaf on Y. The pushforward sheaf is defined by the formula:

f⇤G(U) := G(f-1(U))

There should be an inverse operation that takes a sheaf F on X and pulls back along
f : Y ! X. After all, if i : W ,! X is the inclusion of an open set, then a natural candidate
for the pullback sheaf i⇤F would be the restriction of the domain of definition of F to
only those open sets contained in W.

F|W(U) = F(U)

However, if f : Y ! X is not an open map, then there is no hope for an easy definition.
Sheafification, however, comes to the rescue.
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Definition 2.5.8 (Pullback Sheaf). Let f : Y ! X be a continuous map and F a sheaf on X.
The pullback sheaf, written f⇤F is the sheafification of the pre-sheaf

U lim�!
V�f(U)

F(V)

Example 2.5.9 (The Stalk). Let i : {x} ,! X be the inclusion of a point into a space with a
sheaf F defined on it. The sheaf i⇤F ⇠= Fx is the stalk at x.

Exercise 2.5.10. Verify for i : W ,! X that i⇤F = F|W

The next pair of interest is the middle pair.

Definition 2.5.11 (Sheaf Hom). Suppose F and G are sheaves of abelian groups over a
single space X. The sheaf hom Hom(F,G) assigns to every open set

Hom(F,G)(U) := HomShv(U)(F|U,G|U)

For the algebraically minded, there should be a knee-jerk response for an associated
tensor sheaf, however the naïve assignment needs to be sheafified.

Definition 2.5.12. Suppose F and G are sheaves of abelian groups over a single space X.
The tensor product of sheaves F⌦G is defined to be the sheafification of the assignment

U F(U)⌦G(U)

The reader is encouraged to work through the following exercise, borrowed
from [Ach07] with a few extra hints.

Exercise 2.5.13. Let Q be the sheaf of sections of the map f : S1 ! S1 defined via complex
coordinates as f(z) = z2, i.e.

Q(U) := {s : U! S1 | f � s(z) = z}.

Check that this sheaf has no global sections. Now let Qk be the sheaf which assigns to
each open set U the k vector space freely generated by the set Q(U). Show by taking a
carefully chosen cover of S1 that

F : U Qk(U)⌦Qk(U)

is not a sheaf. Observe that we have a natural method for tensoring elements of Qk(U)
together via pointwise multiplication. Any element s 2 Qk(U) satisfies (s ⌦ s)(z) =
s(z)2 = z, but there are interesting cross-multiple terms.
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Although working out the above exercise is rewarding, the category theorist knows
that since tensor products are colimit constructions and the sheaf axiom involves limits,
one should instantly be suspicious of such a construction defining a sheaf. However,
one can construct cosheaf-theoretic analogs of the above functors and there the tensor
cosheaf is naturally a cosheaf, but cosheaf Hom needs to be “cosheafified,” if such a
thing exists.

2.5.3 Failures to Commute

Unfortunately, the universe appears to have a sort of handedness that makes certain
constructions for sheaves natural, but not so for cosheaves. This is because most data
categories D, such as Set, Vect or Ab, are not equivalent to their opposite categories. Thus
the topological simplification of reducing cosheaves to sheaves comes at the cost of mak-
ing the algebraic thinking more difficult. In particular, certain properties of D = Set, Vect
or Ab are used in the development of sheaf theory, which do not necessarily hold in Dop.
The centerpiece of this discussion will be understanding that filtered colimits commute
with finite limits in D, but cofiltered limits do not necessarily commute with finite col-
imits in D. Let us now relay the necessary definitions.

Definition 2.5.14. A non-empty category C is called filtered if the following two proper-
ties are satisfied:

• For every pair of objects x,y 2 C there is a third object z 2 C with x! z and y! z.

• For every pair of parallel morphisms f,g : x ! y there is a third object and mor-
phism h : y! z such that h � f = h � g.

A category C is called cofiltered if Cop is filtered. Sometimes, when the category is
especially simple, we will simply call a cofiltered category filtered.

Example 2.5.15. In Section 2.4 we considered the category of covers Cov(U) of an open
set U. By noting that any two covers have a common refinement, one sees that this is an
example of a cofiltered (or cofiltrant) category.

Definition 2.5.16. Suppose I is a filtered indexing category with F : I! D and G : Iop !D diagrams in some category. We will call the colimit of F a filtered colimit and the limit
of G a cofiltered limit.

Now we give an example already introduced in the context of sheafification.

Example 2.5.17 ((Co)Stalks). Suppose X is a topological space and x is a point in X. The
set of open sets containing x defines a cofiltered subcategory of Open(X) or a filtered
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subcategory of Open(X)op. Consequently for a pre-sheaf F or a pre-cosheaf bF, the follow-
ing

Fx := lim�!
U3x

F(U) lim �
U3x

bF(U) =: bFx

define a filtered colimit and cofiltered limit, respectively. These are called the stalk at
x of a pre-sheaf F and the costalk at x of a pre-cosheaf bF. Of course, to make such a
statement meaningful, one needs to assume the data category D has the relevant limits
and colimits.

The following theorem illustrates one of the fundamental differences between sheaves
and cosheaves. It is expressed through the following algebraic fact, which the reader
might like to compare with the Fubini theorem.

Theorem 2.5.18. Let I be a filtered indexing category and J a finite category. Then any
functor ↵ : I⇥ J! D where D = Set, Vect, or Ab, has the property that the natural map

lim�!
I

lim �
J

↵(i, j)! lim �
J

lim�!
I

↵(i, j)

is an isomorphism. We say for short that “filtered colimits and finite limits commute” in
these categories.

Proof. For a proof of this statement, we refer the reader to theorem 3.1.6 in [KS06]. First
note that the product category I⇥ J is just a product in Cat - the category of all categories.
We can describe the objects of I⇥ J as pairs of objects, one from each category, and the
morphisms as tuples of morphisms, one for each object. One can take ↵ and then define
a new functor lim �J

↵ : I ! D gotten by assigning to each object i 2 obj(I) the limit
over J of ↵(i,-) : J ! D. Taking the colimit over I defines the first expression. Similar
reasoning defines the second.

For an application of this theorem we introduce some ideas to the world of pre-sheaves
valued in Vect. Recall that a complex of vector spaces

· · ·! V1 ! V2 ! V3 ! · · ·

is exact at a term in a sequence if the image of the incoming map coincides with the
kernel of the outgoing map. A sequence of pre-sheaves7 is exact if and only if for each
open set U the associated sequence of vector spaces is exact, i.e.

0! E! F! G! 0 iff 0! E(U)! F(U)! G(U)! 0

7 The corresponding statement for sheaves is not true.
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Theorem 2.5.18 then implies that for any point x 2 X the induced sequence of stalks

0! Ex ! Fx ! Gx ! 0

is exact. Intuitively this is because we can view E as a kernel of the pre-sheaf map F! G
and as already demonstrated, kernels are examples of finite limits. Thus taking the
kernel of the stalk map Fx ! Gx is the same as taking the stalk of the kernel of F! G.

Proposition 2.5.19. For D = Set, Vect or Ab it is not true that cofiltered limits and finite
colimits commute. Consequently, if A,B,C : Nop ! Ab (or Vect) are functors from
the category of natural numbers equipped with the opposite ordering, with natural
transformations A! B! C such that

0 // Ai
// Bi

// Ci
// 0

is exact for every i, then it is not always the case that the induced sequence on limits is
exact.

0 // lim �A // lim �B // lim �C // 0

Proof. We borrow an example from Jason McCarthy’s notes [McC]. Consider the follow-
ing system of short exact sequences of groups:

...

✏✏

...

✏✏

...

✏✏

...

✏✏

...

✏✏
0

✏✏

// Z

n+1
✏✏

n // Z

n+1
✏✏

// Z/n //

id
✏✏

0

✏✏
0

✏✏

// Z

n+1
✏✏

n // Z

n+1
✏✏

// Z/n //

id
✏✏

0

✏✏
0 // Z

n // Z // Z/n // 0

The inverse limit of the first (and second) column with non-zero entries must be zero. To
see why, note that the inverse limit can be described as

lim �
Nop

Zi = {(xi) 2
Y

i

Zi | xi = (n+ 1)j-ixj 8j > i},

where we have viewed the indexing category as the natural numbers with the opposite
ordering. Any non-zero element of the limit would have some non-zero factor xi and
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consequently all other factors would be non-zero (since the map a ! (n+ 1)a is injec-
tive). In particular, all higher xj must be equal to xi/(n+ 1)j-i, but letting j be suitably
large would imply that xj must be less than one — an impossibility. Thus the induced
map of inverse limits is

0 // 0 // 0 // Z/nZ // 0

which is not exact. If the reader prefers an example in the category of vector spaces, one
should see Schapira’s example 4.2.5 in his notes [Sch].

Thus the statement that short exact sequences of pre-cosheaves induces a short exact
sequence on costalks cannot be guaranteed. There is a subtle work-around that says un-
der suitable hypotheses8 exactness can be guaranteed. This holds for categories like vect,
the category of finite-dimensional vector spaces, and ab, the category of finite abelian
groups, because this is where the descending chain condition holds [AM69].

This last comment about vect provides justification for performing some dualization
to obtain results about cosheaves from sheaves. After all, for finite-dimensional vector
spaces it is true that

Homvect(-,k) : vectop ! vect
establishes an equivalence of categories.9 However, issues of stalks versus costalks is not
the primary obstacle that the asymmetry of Theorem 2.5.18 presents. That obstacle has
to do with a process known as sheafification, which provides a universal tool for turning
any pre-sheaf into a sheaf. For most texts on sheaf theory it is presented before almost
any other theory is developed.

The most general sheafification process outlined by Grothendieck takes a pre-sheaf
F and defines a new pre-sheaf F+ that assigns to each open set U the filtered colimit
of F : Cov(U)op ! D, see [KS06, Sec. 17.4] for a modern exposition. Applying this
construction twice defines a sheaf. However, in order to guarantee that this F++ is a sheaf
one uses the properties of Theorem 2.5.18. This now gets us to the more fundamental
reason why the study of cosheaves may be so obscure: The non-exactness of lim � thwarts
the Grothendieck prescription for cosheafification. For pre-cosheaves valued in Set, Ab orVect there is simply no hope in using the standard, most general, cosheafification.

There are a very small handful of approaches that have been used to circumvent this
problem:

1. Čech Homology and Smoothness: One approach developed by Bredon [Bre68,
Bre97] is to define an equivalence relation on pre-cosheaves, more nuanced than iso-

8 i.e. the Mittag-Leffler condition. See [KS02, Sec. 1.12] or [AHS09b, pp. 211-214] for more details.
9 This does not extend to an equivalence between Vect and its opposite category. In fact, Vectop is equiv-

alent to the category pro - vect, cf. [Isa02, Rmk.6.2].
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morphism, which is constructed through zig-zag diagrams of local isomorphisms.
Bredon develops an operation which uses Čech homology to take in one pre-
cosheaf and produce another. In the event that the starting pre-cosheaf was equiv-
alent to a cosheaf (Bredon calls such a pre-cosheaf smooth), he proves that his con-
struction yields a cosheaf.

2. Pro-Objects: Another notable approach is to use pro-objects, i.e. functors P : Iop !C where I is filtrant. This theory is engineered in such a way that all the desired
algebraic properties exist. This approach was perhaps first used by Jean-Pierre
Schneiders [Sch87] to develop a rich theory of cosheaves. The problem with pro-
objects is its conceptual and algebraic difficulty. For the visually minded, cosheaves
of pro-objects are infinite diagrams of infinite diagrams, which obscure the many
natural examples of pre-cosheaves and cosheaves that one might want to capture.
More recent work [Sug01, Pra11], has also used this setup for cosheaves.

3. Topology: Here, one eschews full generality and works only with certain cosheaves
known as constructible cosheaves, which can be thought of as cosheaves on par-
ticular finite spaces. Cosheafification in this setting exists and is natural. Often one
does not even think about needing to cosheafify, because the diagrams are mod-
eled on the points of the space. This school of thought, motivated by the vision
and unpublished ideas of Bob MacPherson, has some recent trace in the literature,
see [Woo09, MT12].

For the most part, we choose to sidestep the issues of sheafification and cosheafifica-
tion by focusing on the third approach. We believe that this provides a better way of
learning sheaf theory as it removes the ever-present phrase “let blank be the sheafifica-
tion of blank” and focuses on the more important technical machinery first. However, we
provide a proof that cosheafification does exist in the next section.

2.5.4 The Existence of Cosheafification

Grothendieck gave us a general construction of the sheafification functor g(-) that works
in more general data categories D, which comes from applying a certain functor (-)+

twice. The requirement on the category D includes, among other things, that filtered
colimits and finite limits commute. If we were to regard a pre-cosheaf bF : Open(X) ! D
as a pre-sheaf valued in Dop, then the condition that filtered colimits and finite limits
commute in Dop would become the condition that cofiltered limits and finite colimits
commute in D, which is patently false when D = Set, Vect or Ab, as the example in
Proposition 2.5.19 showed.
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Consequently, we do not have a clear answer to the question: Does the inclusion
functor ◆ have a right adjoint (-)#?

◆ : CoShv(X; D) ,! Fun(Open(X), D) =: PreCoshv(X; D)

so that the dual universal property is satisfied, i.e. if bF is a pre-cosheaf and bG is a cosheaf
with a morphism bG! bF, then there is a unique way of completing the diagram.

bF#

✏✏
bG

@@

// bF

In the case where D = Set, Jon Woolf’s paper [Woo09] contains a construction of
cosheafification. Unfortunately, this cannot be adapted to categories like Vect or Ab.
For a high-level reason why, Mac Lane and Moerdijk explain on page 95 of [MM92] that
a sheaf of abelian groups can be identified with an abelian group object in the category
of sheaves. Since sheafification preserves finite products, sheafification of pre-sheaves of
sets lifts to a functor between abelian group objects. Moreover, since the forgetful functor
for : Ab ! Set preserves limits (but not colimits), any sheaf of groups defines a sheaf
of sets. Trying to repeat this last line of reasoning for cosheaves of groups fails, i.e. a
cosheaf of groups does not, by forgetting, define a cosheaf of sets.

Our approach is to verify abstractly whether cosheafification exists without construct-
ing it. Of course, one would like to use Freyd’s Adjoint Functor Theorem 1.5.2, but we
will use a different theorem [AR94, Thm 6.28] that is easier to check.

Theorem 2.5.20. Assuming Vopenka’s principle (a large cardinal axiom), every full sub-
category B of a locally presentable category C, where B is closed under colimits, is
coreflective, i.e. the inclusion functor ◆ : B ,! C has a right adjoint (a cofree functor).

We will leave Vopenka’s principle as a black box and assume it, even though many cat-
egory theorists cringe at its very name. We prove that cosheafification exists by verifying
the hypotheses of the above theorem for our case of interest.

Corollary 2.5.21. The category of cosheaves of vector spaces is a coreflective subcategory
of Fun(Open(X), Vect), i.e. cosheafification exists.

Proof. It is clear that the category of cosheaves is closed under colimits, since we can
define the colimit to be the pre-cosheaf, which open-by-open assigns the colimit of vector
spaces over that open set. This pre-cosheaf is a cosheaf, because for a fixed cover, each
vector space in the diagram is expressed as a colimit and colimits commute with colimits.
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It remains to be seen that the category of pre-cosheaves is locally presentable. this
means that the category is locally small, has small colimits, has a small set of objects
S that generates PreCoshv(X; Vect) in the sense that every pre-cosheaf is a colimit of
objects in S, and every object is small. The first two statements are easily addressed.Open(X) is a small category and Vect is locally small, so the functor category is locally
small. Colimits of pre-cosheaves are defined open-by-open. Since Vect is cocomplete,
pre-cosheaves valued in Vect is also cocomplete. Now we address the existence of a
generating set.

Define, for each open set U 2 Open(X), the following pre-cosheaf:

ĥU(V) =

�
k ifU ⇢ V

0 o.w.

We’d like to say that every pre-cosheaf is a colimit of pre-cosheaves of the above form.
The corresponding statement for pre-sheaves is proved in pages 41-42 of [MM92]. We
will go ahead and repeat the argument here. Note that if bG is an arbitrary pre-cosheaf,
then

HomPreCoshv(ĥU, bG) ⇠= bG(U).

Observe that if U ⇢ U 0, then we get a map of pre-cosheaves (a natural transformation)
ĥU 0 ! ĥU. This in turn induces a map

HomPreCoshv(ĥU, bG)! HomPreCoshv(ĥU 0 , bG)

which coincides with the internal extension map of bG, that is rU 0,U : bG(U) ! bG(U 0). In
other words, the functor

R : PreCoshv(X; Vect)! PreCoshv(X; Vect)
G (U 7! HomPreCoshv(ĥU, bG) ⇠= bG(U))

is isomorphic to the identity functor. Since adjoints are unique up to isomorphism, then
we can conclude that its (left) adjoint must also be isomorphic to the identity functor.
However, we will construct explicitly the adjoint, which, combined with the fact that it
must be the identity functor, exhibits bG as the colimit of pre-cosheaves of the form ĥU.

For each pre-cosheaf bG, define the following category of elements JbG.10 The objects of
JbG are pairs

(U, x) where U 2 Open(X) x 2 bG(U).

10 It should be noted that in [MM92], the category of elements is written
R bG.
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A morphism (U, x) ! (U 0, x 0) is defined if U ⇢ U 0 and x 0 = rU 0,U(x). Clearly, there
is a projection functor ⇡bG : JbG ! Open(X) and by formality, there is a dual functor
⇡opbG

: JopbG
! Open(X)op.

Denote by Y the functor

Y : Open(X)op ! PreCoshv(X; Vect) U ĥU.

We claim that the left adjoint L to the functor R considered above can be constructed
object-wise as follows: for each pre-cosheaf bG define

L(bG) := lim�!Y � ⇡opbG .

We claim that bG is the colimit. This is already given from the fact that L must be iso-
morphic to the identity functor, but let’s at least check how bG is a co-cone, to make the
statement more plausible. For each object (U, x) in JbG the map to bG is defined by

x 2 bG(U) ⇠= HomPreCoshv(ĥU, bG) 3  U,x

where  U,x is the natural transformation that sends 1 2 ĥU(U) to x 2 bG(U) and then
for any larger open set U ⇢ U 0 sends 1 2 ĥU(U

0) to rU 0,U(x). Observe that if U ⇢ U 0

and (U 0, x 0) ! (U, x) is a morphism in JopbG
, so rU 0,U(x) = x 0, then we have the following

commutative diagram:
(U 0, x 0)

✏✏

// ĥU 0

✏✏

 
U,x 0

��
(U, x) // ĥU  

U,x
// bG

At the risk of demonstrating the obvious, the above diagram commutes if the the follow-
ing diagram commutes for an arbitrary triple of open sets V ⇢ V 0 ⇢ V 00. We will check
it for the interesting boundary case U ⇢ U 0 ⇢ U 00.

ĥU 0(U 00) = k 1 // ĥU(U
00) = k

r
U

00,U 0(x)
// bG(U 00)

ĥU 0(U 0) = k 1 //

1

OO

ĥU(U
0) = k

1

OO

r
U,U 0(x)=x 0

// bG(U 0)

r
U

00,U 0

OO

ĥu 0(U) = 0 //

OO

ĥU(U) = k x //

1

OO

bG(U)

r
U

0,U

OO
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This completes the plausibility check. We use the observation that L is isomorphic to the
identity functor to conclude that bG is actually the colimit. The conclusion is that

bG ⇠= lim�!Y � ⇡opbG

i.e. bG is expressible as a small colimit of pre-cosheaves of the form ĥU where the size
of the indexing set is bounded by the product of the cardinality of Open(X) and the
maximum cardinality of bG(U) over varying U.

Now it remains to check the smallness of objects in PreCoshv(X; Vect). An object bG is
small if there exists a regular cardinal  such that Hom(bG,-) commutes with directed
colimits of diagrams indexed by categories of cardinality at most .

Observe that for one of our pre-cosheaves ĥU is compact since if (bFi) is a direct system
of pre-cosheaves, then

lim�!Hom(ĥU,bFi) ⇠= lim�!
bFi ⇠= Hom(ĥU, lim�!

bFi).

As already shown, for every pre-cosheaf bG there exists a diagram whose cardinality is
the cardinality of JbG, which we will call J. Now, we know how to express bG as a colimit
of ĥU’s. Thus,

Hom(bG, lim�!
i

bFi) ⇠= Hom(lim�!
U

ĥU, lim�!
i

bFi)

⇠= lim �
U

Hom(ĥU, lim �
i

bFi)

⇠= lim �
U

lim�!
i

Hom(ĥU,bFi)

⇠= lim �
i

lim�!
U

Hom(ĥU,bFi)

⇠= lim�!
i

Hom(lim�!
U

ĥU,bFi)

⇠= lim�!
i

Hom(bG,bFi)

The third line follows from compactness of ĥU. The fourth line follows from the fact
that in Set, J small colimits commute with J -filtered colimits. This completes the
proof.



3
P R E L I M I N A RY E X A M P L E S

“The content of a mathematical theory is never larger than the set of examples that
are thoroughly understood.”

— Vladmir Arnol’d [Arn04]

Theories should be motivated by examples. In this chapter we develop the common
themes these examples share. Broadly speaking, all sheaves are realized via local sec-
tions associated to a particular map. This principle is rigorously embodied by the étalé
perspective. Similarly, all cosheaves of sets are realized by connected components of the
fiber of a map, embodied by the display perspective, which is a generalization of the Reeb
graph construction outlined in Definition 3.4.1.

3.1 sheaves model sections

Recall that if f : Y ! X is a continuous map then a section is a continuous map g : X! Y
such that f(g(x)) = x for all x. This definition has the property that f is surjective.
Sometimes a map admits a locally-defined section over a subset U ⇢ X, but not a global
one. There is a sheaf that tracks this data.

Definition 3.1.1 (Sheaf of Sections of a Map). Suppose ⇡ : E ! X is a continuous map.
Then we can associate a sheaf of sections to this map as follows:

U F(U) := {s : U! ⇡-1(U) continuous |⇡(s(x)) = x}.

Clearly, if F(X) 6= ;, then we can answer positively the question “Does ⇡ : E! X have
a section?”

E

⇡
✏✏
X

?

VV

To see why this is a pre-sheaf valued in D = Set note that what is assigned to an open
set U is a set of maps. A map whose domain of definition is U can always be restricted

49
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to a smaller open subset V ⇢ U to define a map on V . This process of restricting the
domain of definition we write as ⇢V ,U(s) := s|V , which is what makes this assignment a
pre-sheaf.

Let us prove this defines a sheaf. Suppose U ⇢ X and U = {Ui}i2⇤ is an arbitrary open
cover of U. We must prove that the map

F(U)! F[U] := lim �(N(U)op ! Open(X)op ! Set)
is an isomorphism. Recall that the limit can be described in terms of products and
equalizers. As such, every element of the limit is described by a collection of continuous
sections si : Ui ! ⇡-1(Ui), one for each element of the cover, such that on intersections
⇢ij,i(si) = ⇢ij,j(sj).1 The natural map from F(U) to F[U] simply takes a section s 2 F(U)
to the collection of restricted sections {si := s|U

i

}. If two sections over U differ at a point
x, then they will define different sections over Ui 3 x, thus the natural map is injective.
To check surjectivity, note that an element in the limit defines a section over U by setting
s(x) = si(x) if x 2 Ui and this will be continuous by the pasting lemma described at the
beginning of Chapter 2.

Example 3.1.2. For a simple example, consider the projection onto the first coordinate
⇡t : [0, 1]⇥ [0, 1] ! [0, 1], which we regard as taking a time-space coordinate (t, x) to
its time coordinate t. There are lots of sections of this map. The map that assigns to
each time t a fixed position p 2 [0, 1] defines a section, so there are uncountably many
sections.

Now consider a different map that comes from restricting the time projection map to
a subset E ✓ [0, 1]⇥ [0, 1], i.e. ⇡ := ⇡t|E : E ! [0, 1] is the restricted map. A drawing can
be found in Figure 4 where E is the region bound between the two curves. Does it have
any global sections, i.e. is F(X) 6= ;?

The answer is clearly no. The example in Figure 4 illustrates a concept central to sheaf
theory. Although about each point in time t there is some ✏ > 0 such that on the open
set (t- ✏, t+ ✏) a continuous section can be defined, there is no globally defined section.
Thus local sections (local solutions) exist, but they do not always glue together to define
a global section (global solution). This is why we say

Sheaves mediate the passage from local to global.

Example 3.1.3 (Square Map). Suppose f : C ! C is the map sending a complex number
z to z2. For a point w = rei✓ with r 6= 0 there are two points in the fiber: z =

p
rei✓/2 and

z 0 =
p
rei✓/2+⇡. Consequently, for a small connected neighborhood about w there are

1 Here we have adopted the shorthand of referring to open sets via elements of the nerve.
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figure 4: Is There a Section?

two corresponding continuous sections. There is no global section because the square
root map is necessarily multi-valued when considered all the whole complex plane.

Lists of similar examples abound in geometry and topology, most of which are con-
cerned with the following mathematical structure.

Definition 3.1.4. A fiber bundle over X consists of total space E equipped with a contin-
uous surjective map ⇡ : E ! X satisfying the property that for each point x 2 X there
exists an open neighborhood U such that the following diagram commutes.

⇡-1(U)
h
U //

⇡
##

U⇥ F

⇡
U||

U

Here F is the fiber space, hU is a homeomorphism and ⇡U is projection onto the first
factor. If F is a discrete space then we usually write X̃ instead of E and say that ⇡ : X̃! X
is a covering space. If each fiber ⇡-1(x) is endowed with the structure of a group, i.e.
F = G with the discrete topology, so that hU induces a group isomorphism between
⇡-1(x) and G, then E is called a bundle of groups. Analogous definitions hold for fiber
a ring or a module.

The map ⇡ : M ! S1 where M := S1 ⇥R/ ⇠ with (x,y) ⇠ (x+ 2⇡,-y) is an example
of a fiber bundle over S1. Restricting the domain of ⇡ to the subspace S1 ⇥ [-1, 1] allows
one to think of this map as projecting the Möbius bundle to its core circle. The projection
⇡ has a section that embeds S1 as the zero section, but there are no sections which avoid
S1 ⇥ {0}. The “hairy ball” theorem is the analogous statement except for the tangent
bundle to the two sphere S2. Sheaf theory is the lingua franca for bundle theory and
category theory. Thus even the most trivial example of a product bundle, E = X⇥ k! X
where k is a field, is of interest.
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Definition 3.1.5 (Constant Sheaf). Suppose A is an R-module equipped with the discrete
topology and E = X⇥A ! X is the product bundle. The sheaf of sections of this map
is called the constant sheaf AX. If A = R is a field k or the ring Z we will just say the
constant sheaf and write kX or ZX. We will almost always work over a field k.

If ⇡ : E ! X is not necessarily the product bundle, but has fiber A, then we call the
sheaf of sections of ⇡ the locally constant sheaf F with value A.

For locally connected spaces the constant sheaf kX assigns to any open set U the prod-
uct of the field k for as many connected components as U has. To see this, let us be more
precise about how the algebraic structure of the module/vector space interacts with the
topological structure of a fiber bundle [Mac91, Sec. 7.2.1].

Definition 3.1.6 (Local Systems). Let k be a field viewed as a topological space with
the discrete topology. A local system is a covering space ⇡ : L ! X equipped with
the structure of a k-vector space on each fiber. Specifically, an n-dimensional local
system on a topological space X is a topological space L, a map of spaces ⇡ : L ! X,
and, for each point p 2 X, a k-vector space structure on ⇡-1(p) with the following
property: Every point p 2 X has a neighborhood U such that there is a homeomorphism
hU : ⇡-1(U) ! U ⇥ kn such that ⇡U � hU = ⇡ and for each x 2 U the vector space
structure on ⇡-1(x) is induced by h from the one on {x}⇥ kn.

Our definition of the locally constant sheaf F in Definition 3.1.5 is more accurately
defined as an n-dimensional local system L, at least when A is a k-vector space. Con-
sider one of the distinguished open neighborhoods U of a point x 2 X provided by the
definition. Here we have a commutative diagram:

⇡-1(U)
h
U //

⇡
##

U⇥ kn

⇡
U

{{
U

For a locally connected space we can assume U is connected by replacing U with what-
ever connected component of U contains x. Consider a section of ⇡ : L ! X over U.
Since kn has the discrete topology any section s over U has to be constant since the
image of a connected set is always connected. This implies that every section s has the
form hU � s(y) = (y, (v1, . . . , vn)) for every y 2 U and for some fixed vector v̄ 2 kn.
Consequently, for the distinguished neighborhood U, the set of sections

F(U) = AX(U) ⇠= kn ⇠= A.

Moreover, by the local system condition, we can form any linear combination of sections
s1, s2 2 F(U) to obtain a third section ↵s1 + �s2 2 F(U). This implies that the locally
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constant sheaf is actually a sheaf valued in Vect — the category of vector spaces. Arguing
in the same way for each connected component tells us that over a union U 0 of disjoint,
connected, distinguished neighborhoods, a locally constant sheaf has the value

F(U 0) ⇠= A⇡0(U
0) ⇠= H0(U 0;A) ⇠= H0(U 0;k)n.

This illustrates that a locally constant sheaf can be thought of as taking H0 of a space
with “twisted” coefficients.

3.2 local systems : a bridge between sheaves and cosheaves

Formulating locally constant sheaves as a twisted H0 presents an obvious dualization in
terms of H0. Moreover this duality reaches higher by considering higher cohomology
and homology as well. To understand this, we will need to understand local systems
better.

Definition 3.2.1. The collection of local systems over X forms a category Loc(X). A
morphism of between two local systems ⇡ : L ! X and ⇡ 0 : L 0 ! X is a map ' :
L ! L 0 such that ⇡ 0 �' = ⇡ and the restricted map 'x : ⇡-1(x) ! ⇡

0-1(x) is a linear
transformation.

The following theorem is classical and allows us to use two definition of local systems
interchangeably.

Theorem 3.2.2. If X is a locally connected and locally simply connected space, then the
category of local systems is equivalent to the category of representations of the funda-
mental groupoid of X, i.e. Loc(X) ' Rep(⇡1(X)).

Recall that the objects of Rep(⇡1(X)) are functors L : ⇡1(X)! Vect.
Remark 3.2.3. For a connected space X fixing a base point x0 provides a skeletal subcate-
gory ⇡1(X; x0) ,! ⇡1(X). Precomposing L with this inclusion defines a representation of
the fundamental group ⇡1(X; x0).

Proof (Idea). The functor that realizes this equivalence is very easy to describe. Given
a local system L one defines a representation L : ⇡1(X) ! Vect by assigning to points
x 2 X, the vector space ⇡-1(x) =: L(x). Now suppose � : [0, 1]! X is a path connecting x
to y. Since ⇡ : L! X is a covering space, there is a unique lift �̃ connecting any element
of ⇡-1(x) to an element in ⇡-1(y). These lifts piece together to define a monodromy map
µ� : L(x)! L(y). Since local systems are fiber bundles, a homotopy of paths pulls back
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figure 5: Trivial Circle Bundle over the Circle

to a trivial bundle, which shows that the map µ� is invariant under homotopy classes of
paths rel endpoints.

Moreover, one can construct a space associated to a functor L : ⇡1(X) ! Vect by
considering the product L :=

Q
x2XL(x) and topologizing suitably. For example, one

could consider a basis of open sets around a point v 2 L(x) given by the collection of
elements {w 2 L | 9�, s.t.µ�(v) = w}. This construction mirrors the usual construction of
a classifying space given in Hatcher [Hat02, Sec. 1.3] or Munkres [Mun00, Ch. 13].

This equivalence allows us to define plenty of examples of local systems coming from
fiber bundles.

Proposition 3.2.4 (Fiber Bundles Give Local Systems). Suppose ⇡ : E ! X is a fiber
bundle, then for each i the homology of the fiber Hi(⇡

-1(x);k) defines a local system.
Dually, for each i the cohomology of the fiber Hi(⇡-1(x);k) defines a representation of
the fundamental groupoid and consequently a local system.

Proof. This is easily seen because any path � : [0, 1] ! X determines a pullback bundle
�⇤E which is trivial, so there is an isomorphism Hi(⇡

-1(�(0));k) ! Hi(⇡
-1(�(1));k).

Moreover, any homotopy of paths H : [0, 1]2 ! X determines a trivial pullback bundle
H⇤E.
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figure 6: Identification Spaces for the Torus and Klein Bottle

Let us now consider two examples. Firstly, in Figure 5 we drew a map from the torus
to a circle. To define this map one considers the torus as the space S1⇥S1 and defines the
map to be projection onto the first factor. Secondly, consider the analogous projection
map from the Klein bottle to the circle. An identification space model is depicted for
both of these maps are drawn in Figure 6 with the left hand side being the torus with its
map and the right hand side being the Klein bottle with its map.

Consider the local system gotten by taking H1(-;k) of the fiber ⇡T : T ! S1. Be-
tween any two points s and s 0 there are two homotopy classes of paths connecting them:
one that in the identification space model proceeds directly from s to s 0 and one that
wraps around the circle using the implied identification. Choosing a basis for the vector
space H1(⇡

-1
T (-);k) involves choosing a cycle along with an orientation. If one considers

the monodromy map associated to either path, one can see that in the bases indicated
for H1(⇡

-1
T (s);k) and H1(⇡

-1
T (s 0);k) in Figure 7 both monodromies are trivial (i.e. the

identity map k! k) as indicated by the green arrows.
Now consider the local system gotten by taking H1(-;k) of the fiber for ⇡K : K ! S1.

Choosing the same bases as before the monodromy associated to the longer path that
wraps around the identification space is non-trivial

H1(⇡
-1
K (s 0);k) = k

-1 // k = H1(⇡
-1
K (s);k)

as indicated by the red arrows in Figure 8.
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s s’! s s’!

figure 7: Trivial Action with the Torus Map

s s’! s s’!

figure 8: Non-trivial Action from the Klein Bottle
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We now will show that these examples actually provide examples of locally constant
cosheaves, or sheaves if cohomology is taken. First, we will need some alternative defi-
nitions.

Definition 3.2.5. Let X be a locally connected space. A sheaf AX or cosheaf ÂX on X
valued in Vect is constant with value A if for every open set U they make the following
assignments:

AX : U A⇥⇡0(U) ÂX : U A�⇡0(U).

A sheaf F or cosheaf F is locally constant if for each point x there is an open neighbor-
hood U such that F or F is constant, i.e. there is a vector space A such that F|U ⇠= AX or
F|U ⇠= ÂX.

As a consequence of this definition and the topological assumptions on X, a locally
constant sheaf or cosheaf possesses for each point x 2 X a collection of connected neigh-
borhoods containing x all of which take identical values. As a consequence F(U) ! Fx
or Fx ! F(U) is an isomorphism. Moreover, for any other point x 0 contained in U, the
stalk or costalk at x 0 can be chosen to be isomorphic to F(U) or F(U) respectively. By
chaining together these sorts of isomorphisms, one can show the following theorem:

Theorem 3.2.6. Suppose X is a locally path connected, locally simply-connected para-
compact Hausdorff space. A locally constant sheaf determines a a local system, where a
local system is defined to be a representation of the fundamental groupoid of X, i.e.

L : ⇡1(X)! Vect.
Similarly, any locally constant cosheaf valued in Vect determines a local system.

Proof. By taking stalks or costalks we can define the functor L on objects x 2 X to be Fx
or Fx, respectively. Since the theorem is well known (see [Ach07] for a proof, which we
follow here) for sheaves we present the cosheaf-theoretic proof instead.

Call a subset K of X fine2 for a cosheaf F if it is connected and is contained in a
connected open set V such that F|V is a constant cosheaf. For any set of points {xi} in a
fine set K we have a collection of isomorphisms

F(V)

Fx
i

⇡
i

<<

Fx
j

⇡
j

OO

Fx
k

⇡
k

bb

2 In [Ach07] they use the word “good.”
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that when composed together allows us to define an invertible map from Fx
i

! Fx
k

via
⇡-1
k ⇡i. Of course this map agrees with the composition of the analogously defined map

Fx
i

! Fx
j

! Fx
k

because ⇡-1
k ⇡j⇡

-1
j ⇡i = ⇡-1

k ⇡i.
Now we claim that given a path � : [0, 1] ! X there exists a sequence of points

0 = a0 < a1 < · · · < an = 1 so that for all i the set �([ai,ai+1]) is fine. This is the case
because every point �(t) possesses a fine neighborhood and by continuity there are open
intervals Vt of t such that �(Vt) is fine. If we choose intervals [a,a 0] contained in each Vt,
the interiors of these intervals will form an open cover of [0, 1]. By compactness, finitely
many of these intervals will do. Choosing such a finite list, merging and ordering the
endpoints, gives the requested sequence.

From the sequence we can define the map ⇢(�) : F�(0) ! F�(1) to be the composite

F�(a
0

) ! F�(a
1

) ! · · ·! F�(a
n

).

This map is well defined by virtue of the fact that it is invariant under the addition
of extra points a 0 to the sequence above. Consequently, if any different sequence was
chosen we could have merged it with this one and deduced that these maps were the
same.

A similar argument can be used to show that for homotopies H : [0, 1]⇥ [0, 1] ! X
there are sequences {ai}

n
i=1 and {bj}

m
j=1 so that the sets H([ai,ai+1]⇥ [bj,bj+1]) are fine.

Using the same concatenation of isomorphisms proves that if � and � 0 are homotopic
relative endpoints, then the above defined maps F�(0) ! F�(1) and F� 0(0) ! F� 0(1) are the
same.

Moreover, one can show that representations of the fundamental groupoid give rise to
locally constant sheaves and cosheaves. This will require a slightly more sophisticated
version of van Kampen’s theorem found in [Bro67, May99].

Proposition 3.2.7 (van Kampen’s Theorem). Suppose X is a locally connected topological
space, and suppose U = {Ui} is a cover of X by path-connected open subsets, then the
van Kampen theorem states that

⇡1(X) ⇠= lim�!
I2N(U)

⇡1(UI),

i.e. the functor ⇡1 : Open(X) ! Grpd is a cosheaf for the cover U. However, since
any cover is refined by its connected components, which are open by assuming local
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connectivity, the arguments of Section 2.4 imply that the fundamental groupoid is a
cosheaf.

Theorem 3.2.8. A representation of a fundamental groupoid L : ⇡1(X) ! Vect deter-
mines a locally constant sheaf and a locally constant cosheaf respectively.

Proof. Again the sheaf theoretic version of this statement is well known (see [Ach07]), so
we carry out the cosheaf version. Assume we have a local system L, then we define the
associated cosheaf to be

bL : U H0(U;L) := lim�!
x2U

L|U,

which is a cosheaf on account of the fact that colimits commute with colimits. The fact
that bL is locally constant comes from the fact that each point x has a simply connected
neighborhood U for which the local system H0(U;L) ⇠= L(x) for any x 2 U.

Although it is not pointed out in the literature, the classical proof for sheaves follows
by making the exact dual assignment.

L : U H0(U;L) := lim �
x2U

L|U

Remark 3.2.9 (Alternative Proof). The introduction of an apparently superfluous
H0(-;L) is an invocation of the principle that H0 is a cosheaf. This principle, expressed
in Theorem 2.3.4, actually states that “H0 for any homology theory that satisfies Mayer-
Vietoris is a cosheaf.” This is true again for this case, but it requires that the reader know
that local systems allow us to define a homology theory with “twisted coefficients.”
This theory, which uses singular chains with coefficients determined by L, satisfies the
Eilenberg-Steenrod axioms [Whi78, Ch. 6] and thus Mayer-Vietoris [Spa94, Ch. 4.6]. To
complete our alternative proof of the above theorem, we check one more hypothesis of
Theorem 2.3.4. We observe that for an upward increasing sequence of open sets {Ui} we
have a directed system of chain complexes of twisted singular chains whose right most
end point looks like the (non-exact) sequence

C1(Ui;L)! C0(Ui;L)! 0.

Taking H0 involves only taking a cokernel, which commutes with direct limits. This
proves that H0(-;L) is a cosheaf.

This establishes the following corollary, justifying that local systems do indeed form a
bridge between locally constant sheaves and cosheaves.
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Corollary 3.2.10. With the above topological assumptions on X, the category of locally
constant sheaves and locally constant cosheaves are equivalent.

We leave the details to the reader, who should note that any local system L defines a
sheaf by taking H0(-;L) and a cosheaf by taking H0(-;L).

3.3 cosheaves model topology

The omnipresence of sheaves in geometry and topology should come with no surprise
to many researchers in the algebraic cousins of these fields. Remarkably, cosheaves are
just as abundant, but this fact is less well appreciated. This might stem from a desire to
avoid excessive terminology as very classical constructions in topology might be called
cosheaves, but we will briefly reverse this wisdom to provide ourselves with lots of
examples.

Perhaps the closest parallel to the sheaf of sections is the cosheaf of pre-images, but
the presence of topology makes it a richer object of study.

Definition 3.3.1 (Cosheaf of Pre-images). Suppose f : Y ! X is a continuous map. We
can define the pre-cosheaf of topological spaces bF : Open(X) ! Top by assigning to an
open subset the pre-image f-1(U) 2 Open(Y) endowed with the subspace topology, i.e.

U f-1(U).

Since colimits in the open set category are just unions and f-1([iUi) = [if-1(Ui), this
defines a cosheaf.

Example 3.3.2 (Feature Function). Suppose we have a topological space X, populated
with features of interest, expressed as a function P : {1, . . . ,n} ! X. We get a cosheaf of
sets via bF(U) = P-1(U). A slightly different cosheaf is gotten by letting bG(U) = U\ im(P),
which cannot distinguish points with identical images.

In the case n = 1 we can linearize this last example to define an example analogous to
an example commonly encountered when studying sheaves.

Definition 3.3.3 (Skyscraper Cosheaf). Suppose x 2 X and V is an k-vector space. Let’s
define the skyscraper cosheaf at x with value V to be

ŜVx (U) =

�
V if x 2 U

0 otherwise.

When V = k, we drop the superscript for notational convenience.
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figure 9: Topological Model for Skyscraper Cosheaf

A topological incarnation for the skyscraper is depicted in Figure 9. Here one makes
the assignment

U H0(f
-1(U);k)

where f is the map that maps the circle to the point x, i.e. the constant map with value
x.

We could adopt the perspective of cosheaves of pre-images as an alternative to con-
tinuous functions. This has been suggested in the past by John von Neumann and his
derisively-named pointless topology, where in place of topological spaces one uses the
poset of open sets as a primary notion — an example of a locale — and one observes
that every continuous map of spaces f : Y ! X induces a functor between categories
f� : Open(X)! Open(Y). This perspective will be of use later as we introduce operations
on sheaves and cosheaves.

The cosheaf of pre-images will provide us with lots of examples of cosheaves pertinent
to topology. However, viewing the entire information of the fiber (pre-image) is often too
much to consider. Instead, one can consider invariants of the fiber and get a sometimes
simpler, but still content-rich cosheaf (pending certain properties of the invariant).

Definition 3.3.4 (Cosheaf of Connected Components). Given a continuous map of spaces
f : Y ! X, one can define a pre-cosheaf of the components of the pre-image (not path
components) bF : Open(X)! Set. This is done via the assignment

U ⇡0(f
-1(U)).

This is not always a cosheaf. However, if Y happens to be locally connected, i.e. the
connected components of an open set are open, then it is. Alternatively, one can observe



3.3 cosheaves model topology 62

that the functor ⇡0 : Toplc ! Set is left adjoint to the discrete space functor and so it
preserves colimits [Woo09].

Example 3.3.5 (The Square Map, Again). Consider the cosheaf of connected components
associated to the map f : S1 ! S1 defined in complex coordinates as f(z) = z2. For every
point p 2 S1 there are two connected components in the fiber over p. However, there is
only one connected component over the whole of S1. This illustrates a sort of “twisted”
H0 already alluded to.

Exercise 3.3.6. Work out the cosheaf of connected components associated to the map
⇡ : E! X found in Figure 4.

The next example provides a derived version of the principle that H0 is a cosheaf.

Example 3.3.7 (Singular p-chains). Fix X a topological space and an open subset U. A
singular p-chain on U is nothing more than a R-linear combination of maps of the form
� : �p ! U. Since we can always post-compose a p-chain on U with an inclusion U ,! V ,
this defines a pre-cosheaf

Cp(U) = {
X

�

���|�� 2 R,� : �p ! U}.

This is, however, not a cosheaf as defined. Try writing down a chain on a union of two
open sets as a linear combination of chains on the two sets. A chain needs be sub-divided
into pieces coming from each open set, each piece being represented as a map from a
fixed simplex. As such, if we define

Ĉp(U) := lim�!Cp(U)

where the colimit is being performed over iterated subdivision, then we obtain a
cosheaf [Bre97].

figure 10: Barycentric Subdivision of a Singular Chain

Remark 3.3.8 (Mayer-Vietoris and Cosheaves). Another way of seeing that singular p-
chains do not define a cosheaf is to recall that the proof of the Mayer-Vietoris theorem
starts with the observation that the sequence

0! Cp(U\ V)! Cp(U)�Cp(V)! Cp(U+ V)! 0
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is exact. Here the Cp(U+V) is just notation for the cokernel of the previous map, thus the
sequence is by definition exact. The elements of the cokernel are linear combinations of
singular chains strictly contained in either U or V . One then uses barycentric subdivision
to show that the complexes C•(U + V) and C•(U [ V) are chain homotopy equivalent.
Letting R = k be a field, this motivates defining a cosheaf valued in D = Kb(Vectk) by
assigning

U C•(U;k)

and this will be a cosheaf.3 The category Kb(Vectk) will be discussed later in the paper
where it plays a more important role, but briefly stated it is the category whose objects
are chain complexes of vector spaces of finite length and whose morphisms consist of
equivalence classes of maps where we have identified those that are chain homotopic.
This makes

C•(U+ V) ⇠= C•(U[ V)

thereby forcing the cosheaf axiom to hold. Of course the way this isomorphism is proven
is via the use of barycentric subdivision, so we can avoid using cosheaves of chain com-
plexes by working with the cosheaf Ĉp directly.

The cosheaves of singular chains serve a role precisely dual to the sheaves of co-chains
commonly encountered in the literature. Consequently, homology is most naturally as-
sociated with cosheaf theory and cohomology is naturally associated with sheaf theory.
However, there is a deeper duality between sheaves and cosheaves. When considering
compactly-supported cohomology or closed (Borel-Moore) homology the natural habi-
tats reverse. The kernel of this idea is present in the following example.

Example 3.3.9 (Compactly Supported Functions). Suppose X is a locally compact Haus-
dorff space. Consider the following assignment:

⌦0
c : U {f : U! R | supp(f) compact}

Compactly supported functions defined locally can always be extended to larger open
sets via extension by zero. If X is a manifold, then we get more cosheaves of compactly
supported differential p-forms ⌦p

c for p > 0.

3.4 taming of the sheaf . . . and cosheaf

As argued, the canonical example of a sheaf is the sheaf of sections of a map. This
stands in contrast with the cosheaf of pre-images. However, a legitimate concern of both

3 The author has recently learned that Jacob Lurie calls this a homotopy cosheaf.
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examples is its lack of computability. This concern is heightened given that the digital
computer is becoming an increasingly common tool for modern mathematics.

A natural question might then be “Can we store the sheaf of sections on a computer?”
Even in the example depicted in Figure 4, it seems unlikely. On a small open set the
sheaf of sections is in bijection with the set

{f : (x- ✏, x+ ✏)! (a,b) | continuous},

which is uncountable. Moreover, for simple spaces like the closed unit interval with its
Euclidean topology, there are uncountably many open sets that we need to assign data
to.

To handle the first problem of “too many sections” in a somewhat ad hoc manner, we
can conduct some pre-processing on the input data ⇡ : E! X. As a motivating example,
we can consider a construction normally defined when X = R.

Definition 3.4.1 (Reeb Graph). Suppose Y is a topological space and f : Y ! R is a
continuous map. The Reeb graph [Ree46] is defined to be the quotient space R(f) := Y/ ⇠

where y ⇠ y 0 if and only if y and y 0 belong to the same connected component of the fiber
f-1(t).

Y
q //

f ��

R(f)

⇡
}}

R

Observe that R(f) still possesses a map to R. There is clearly a direct generalization for
arbitrary base spaces X.

For an example of the Reeb graph, consider our zig-zag from Figure 4. Now let’s work
out what the sheaf of sections for R(⇡) is and what the cosheaf of connected components
is as well. Observe that we can probe the sheaf or the cosheaf on [0, 1] ⇢ R by asking
what it assigns to open sets of the form (x - ✏, x + ✏). Clearly it is constant except
when the open set intersects a “critical value.” We express this observation by assigning
values directly to cells in the visible decomposition of the codomain of the function. The
data over incident edges and vertices are related, but the direction of that relation is
dependent on whether we are considering a sheaf or a cosheaf. Making this observation
rigorous has tremendous pay off because it allows us to avoid storing infinitely many
open sets by instead working with finitely many cells.
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figure 11: Sheaf of Sections figure 12: Cosheaf of Components



Part II

L I N E A R A L G E B R A O V E R C E L L C O M P L E X E S

In this part we emphasize that cellular sheaves and cosheaves are nothing
more than linear algebra parametrized by a cell complex. The use of the term
“sheaf” is justified by the Alexandrov topology, which makes functors out
of posets into sheaves or cosheaves. Explicit proofs are presented since the
primary reference of Shepard [She85] is unpublished and not easily accessed.
Cellular sheaf cohomology and cosheaf homology are presented computation-
ally in Chapter 6 and then put on the firm foundation of derived categories
in Chapter 7. The novel contributions from this part, aside from working
explicitly with cosheaves, are the introduction of “barcodes” to interpret cel-
lular sheaf cohomology and cosheaf homology and exploiting the existence
of enough projectives for cellular sheaves to define sheaf homology.

66



4
C E L L U L A R S H E AV E S A N D C O S H E AV E S

“Sheaf theory is [where] you do topology horizontally and algebra vertically.”

— attributed to Maurice Auslander by [Gra79]

We can take it as an experimental observation from Figures 11 and 12 that in certain
situations a sheaf or a cosheaf can be described as assigning data directly to the cells
of a cell complex. Since cell complexes will be objects of primary importance to us, we
review some definitions that may be non-standard.

4.1 cell complexes and the face-relation poset

Definition 4.1.1 (Regular Cell Complex [Mac14b]). A regular cell complex X is a space
equipped with a partition into pieces {X�}�2P

X

such that the following properties are
satisfied:

1. Locally Finite: Each point x 2 X has an open neighborhood U intersecting only
finitely many X�.

2. X� is homeomorphic to Rk for some k (where R0 is one point).

3. Axiom of the Frontier:1 If X̄⌧ \ X� is non-empty, then X� ✓ X̄⌧. When this occurs
we say the pair are incident or that X� is a face of X⌧. The face relation makes the
indexing set PX into a poset by declaring � 6 ⌧.

4. The pair X� ⇢ X̄� is homeomorphic to the pair int(Bk) ⇢ Bk, i.e. there is a home-
omorphism from the closed ball ' : Bk ! X̄� that sends the interior of the ball to
X�.

Remark 4.1.2 (Notation). Another common way of notating a cell complex is as a pair
(|X|,X) where X is the set of cells and |X| is the topological space being partitioned. To

1 The frontier of a subspace A is the complement of A in its closure, i.e. fr(A) := Ā-A. In some forms
this axiom reads: if X

�

6= X
⌧

and X
�

\ X̄
⌧

6= ; then X
�

is contained in the frontier of X
⌧

.

67
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each cell � 2 X there is a corresponding topological subspace |�| ✓ |X|. Our definition’s
notation says that (X,PX) is a cell complex. Our correspondence between cells and sub-
spaces is �  X�. However, we will have occasion to use both of these notations, and
will sometimes use all three symbols �, |�| and X� to mean the same thing.

It is true that every regular cell complex can be further decomposed so that the re-
sulting space is the homeomorphic image of a simplicial complex. However, for ease
of computations we want to work with a class of spaces more general and natural than
regular cell complexes. As such, we work with cell complexes, adopting the same con-
vention as in Allen Shepard’s thesis.

Definition 4.1.3 (Cell Complex [She85, Mac14b]). A cell complex is a space X with a
partition into pieces {X�} that satisfies the first three axioms of a regular cell complex.
Moreover, we require that when we take the one-point compactification of X, then the
cells {X�}[ {1} are the cells of a regular cell complex structure on X[ {1}.

Example 4.1.4. The open interval (0, 1) decomposed with only one open cell is not a cell
complex. Its one-point compactification is the circle decomposed with one vertex {1}

and one edge (0, 1) whose attaching map is not an embedding, thus contradicting the
fourth axiom.

Definition 4.1.5 (Cell category). To a cell complex (X, {X�}�2P
X

) we can associate a cat-
egory Cell(X; {X�}), which is the indexing poset PX viewed as a category. This means
that there is one object � for each X� and a unique morphism � ! ⌧ for each incident
pair X� ✓ X̄⌧. When there is no risk of confusion, or a cell structure is specified at the
beginning, then we will suppress the extra notation and just use Cell(X) or X.

We now introduce diagrams indexed by the cell category. These were defined in Shep-
ard’s 1985 thesis [She85, p. 6], but were known as “stacks” in the first published volume
of Zeeman’s 1954 thesis [Zee62a, p. 626]. However, this term came to be used for an
entirely different construction in the landmark paper of Pierre Deligne and David Mum-
ford [DM69], which introduced the fundamental concept of algebraic and moduli stacks
for algebraic geometry. Zeeman’s usage of the term is now extinct, but his work antic-
ipates MacPherson’s cellular perverse sheaves (cf. Definition 6.3.25) although MacPher-
son was unaware [Mac14a] of the content of Zeeman’s thesis [Zee62a, Zee62b, Zee63].
To keep the presentation simple, we give Shepard’s definition and its appropriate dual-
ization.

Definition 4.1.6 (Cellular Sheaves and Cosheaves). A cellular sheaf F valued in D on X
is a functor F : Cell(X)! D, i.e. it is

• an assignment to each cell X� in X an object F(�),
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figure 13: Bott’s Height Function on the Torus

• and to every pair of incident cells X� ⇢ X̄⌧ a restriction map2 ⇢F�,⌧ : F(�)! F(⌧).

Dually, a cellular cosheaf bF valued in D on X is a functor bF : Cell(X)op ! D, i.e. an
assignment of an object bF(�) for each cell, and an extension map r�,⌧ : bF(⌧) ! bF(�) for
every pair of incident cells X� ⇢ X̄⌧.

Let us consider a few natural examples.

Example 4.1.7 (Bott’s Torus). The following example was first popularized by Raoul Bott
in his book on Morse theory [Mac14a]. Consider the height function on the torus, rotated
by 90circ so that the real line is underneath the torus, as shown in Figure 13. By taking
the pre-image of the star of each cell, one obtains a diagram of spaces bF : Xop ! Top. By
post-composing this diagram with H1(-;k), one obtains the cellular cosheaf indicated in
Figure 14.

Example 4.1.8 (Klein Bottle Revisited). As seen in Section 3.2, a Klein bottle can be
viewed as a non-trivial S1 bundle over the circle. We’ve already seen how the this leads to

2 Shepard calls these co-restriction maps since they point from faces to co-faces, but we will see they are
restriction maps in the Alexandrov topology.
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0! k! k2! k2! k2! k! 0!
figure 14: Cellular Cosheaf by Taking H1 of the Star pre-images

a representation of the fundamental groupoid ⇡1(S
1). We can concoct a cellular cosheaf

that describes this bundle in a different way. Let s and s 0 denote two vertices in a
cell decomposition which includes two edges a and b, as in Figure 8. We can imagine
calling the edge a the short edge between s and s 0 and let b be the long edge. To each
cell bF assigns the homology of the fiber to that cell. The actions are encoded using maps
between the cells. This gives us a diagram of vector spaces in the shape of a cell structure
on S1:

bF(b)
-1

}}

1

""
bF(s) bF(s 0)

bF(b)
1

aa

1

<<

Example 4.1.9. Let Y = (0, 1) be the open unit interval in R. Denote the inclusion of Y
into R by j. To the constant sheaf on Y, written kY , we can associate two sheaves on R:
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kkk

kkk

kkk

0k0

0k0

0k0

k

k

k

k

0

0

0 0

0 0

0 0

0 0

0 0

0 0

figure 15: Cellular Description of j⇤kY and j!kY respectively

j⇤kY and j!kY . To describe these sheaves, we can think cellularly. For the first sheaf j⇤kY
the cellular sheaf is simply the diagram of vector spaces

0 k! k k! 0.

For j!kY the cellular sheaf is the diagram of vector spaces

0 0! k 0! 0.

The key difference being that the latter sheaf is zero on the endpoints {0} and {1}. How-
ever, one can recover the classical, open set description of the sheaves j⇤kY and j!kY by
considering any ordinary (Hausdorff) open set on the real line and then computing the
limit of the diagram that lies over the open set. In Figure 15 we have drawn the two cel-
lular sheaves of interest and the value of the limit over each open set. Of course, one can
dualize the discussion and consider cosheaves instead and use colimits to get functors
from the open set category as defined in Chapter 2. This perspective is developed more
fully in Section 11.2.3.

Since functors between categories assemble themselves into a category of their own,
we get categories of cellular sheaves and cosheaves.

Definition 4.1.10. We denote the category of cellular sheaves on X by

Shv(X; D) := Fun(Cell(X), D)

and the category of cellular cosheaves by

CoShv(X; D) := Fun(Cell(X)op, D).
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Morphisms are natural transformations of functors. If D = Vect, then we will omit the
notation after the semicolon and write Shv(X) and CoShv(X) instead.

The notation deliberately coincides with the notation used for categories of sheaves
and cosheaves on an arbitrary topological space, i.e. functors out of the open set category
that satisfy the appropriate axiom. This conflict will be resolved in Section 4.2 in one
way, and in Chapter 11 in an entirely different way.

4.2 partially ordered sets : finite spaces and functors

Cellular sheaves and cosheaves earn their finiteness by assigning data directly to cells,
rather than open sets. This turns out to not be entirely true; Cellular sheaves and
cosheaves are simply operating on a different topology than the one we are accustomed
to. Partially ordered sets can be endowed with a topology making cellular sheaves and
cosheaves into actual sheaves and cosheaves on this topology.

Here one can illuminate all of the general machinery of classical sheaf theory, but with
a combinatorial finiteness that bends the theory to direct computation and understand-
ing. Some of the explicit treatment of sheaves on posets is contained in the clear and
concise work of Sefi Ladkani [Lad08], but we streamline the discussion by using Kan
extensions, which clarifies how cosheaves on a poset X differ from sheaves on Xop.

4.2.1 The Alexandrov Topology

In this section we introduce a class of non-Hausdorff spaces called Alexandrov spaces.
The reader should note that although this topology is non-Hausdorff, it is highly rele-
vant to concepts in algebraic topology. There is a remarkable theorem due to Michael
McCord [McC66] that states that every finite simplicial complex is weakly homotopy
equivalence to an Alexandrov space. Thus, if one is interested in the topological proper-
ties of simplicial complexes, one should care about (non-Hausdorff) Alexandrov spaces.
McCord even gives constructions of classical operations in algebraic topology, including
suspension, in the Alexandrov setting. However, our ambitions for this section are far
more limited. Let us begin with the necessary definitions.

Definition 4.2.1. A pre-order consists of a set P and a relation 6 that is reflexive and
transitive. A poset is a pre-order where the relation is also anti-symmetric, i.e. x 6 y
and y 6 x implies x = y. A map f of pre-orders is one that respects 6. That is if x 6 y
then f(x) 6 f(y). Pre-orders and order preserving maps form a category Preorder. The
collection of all posets form a subcategory of this category.
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Every pre-order can be equipped with a topology. However, it was first defined for
finite posets by Pavel Alexandrov [Ale37, Ale47] and the general definition carries his
name.

Definition 4.2.2. On a pre-order (P,6) define the Alexandrov topology to be the topol-
ogy whose open sets are the sets that satisfy the following property:

x 2 U x 6 y ) y 2 U

A basis is given by the sets of the form Ux := {y 2 P|x 6 y} — what we will call the open
star at x. Similarly, we define the closure of x by x̄ := {y 2 P|y 6 x}. When P is a finite
poset, then a basis of closed sets is given by the x̄’s.

Any pre-order P has an associated poset. This poset is gotten by defining an equiv-
alence relation on P via x ⇠ y if and only if x 6 y and y 6 x. One can check that this
surjection is order-preserving. This construction defines a right adjoint to the inclusion
of posets into pre-orders [Woo09].

Remark 4.2.3 (P will mean a poset). Although spaces equipped with a pre-order are
an interesting class of structures to consider, we will now work exclusively with posets.
We do this to prevent closed loops from occurring in chains of related elements, as this
would complicate our story.

Example 4.2.4. Consider (R,6) with the usual partial order. The open sets are all those
open or half open intervals such that the right-hand endpoint is +1. Observe that the
closed set (-1, 0) cannot be written as an intersection of closed sets of the form t̄. Thus
the closures at t do not form a basis.

The dictionary between cellular complexes and Alexandrov spaces is easily described.
First we introduce another definition.

Definition 4.2.5 (Star). Let (X, {X�})�2P
X

be a cell complex. Every cell X� has a star, which
is a set that consists of all those cells X⌧ such that X� 6 X⌧.

star(X�) := {X⌧ |X� 6 X⌧}

Since this definition only depends on the incidence relation of cells, we often drop the
distinction between X� and its label �. Thus the star is also described as a subset of the
poset PX consisting of those labels ⌧ such that � 6 ⌧.

The Alexandrov topology on the indexing poset PX of a cell complex allows us to de-
fine a continuous surjective map that comes from sending each cell X� to its label �. This
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continuous surjective map gives an alternative way of describing how the Alexandrov
topology arises. It is the quotient space where we identify two points x and y if and only
if they belong to the same cell.

X

q
✏✏

PX := X/ ⇠

The inverse image of the star of � is an open union of cells, which is open. Thus this
map is continuous and the topology that makes this map continuous is the Alexandrov
topology.

figure 16: Alexandrov Space Associated to the Unit Interval

Example 4.2.6 (The Interval). Suppose X = [0, 1] is the unit interval given a cell complex
structure with two vertices and one open interval. The face relation poset PX takes the
following form:

•

•

??

•

__

The Alexandrov topology has basic open sets corresponding to the star of each cell. The
stars of the two vertices intersect each other. In Figure 16, we have drawn the basic open
sets.

4.2.2 Functors on Posets

We want to understand how data modeled on posets can be treated as a sheaf or cosheaf
on the Alexandrov topology. To do so we use the elegant, but sophisticated, approach
of Kan extensions. To motivate this concept we will consider the relationship between a
poset and its topology.
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Observe that the correspondence between the relation internal to the poset P and the
containment relation for the open sets in the Alexandrov topology is order-reversing.
Said more succinctly, we have an inclusion functor that is contravariant, i.e.

◆ : P ! Open(P)op p 7! Up.

A natural question to ask is

“Given a functor F : P ! D, is there a consistent way of extending F to a
functor R : Open(P)op ! D?”

One can hope to perform this extension since the image of the inclusion ◆ : P !Open(P)op is a basis for the topology. Consequently, we can express arbitrary open
sets as unions (colimits or limits in the opposite category) of basic open sets ◆(p) = Up.
A candidate extension would be to define

F(U) := lim �
U
p

⇢U
F(p)

or as the colimit of F over Up ⇢ U. However, we should have some consistency. If one
views Up = {p 0|p 6 p 0} as a subcategory of the category P, then it has an initial object p
and thus the limit of the diagram F|U

p

is F(p), i.e.

lim �
p6p 0

F(p 0) ⇠= F(p).

This guides us to the following possible extension.

P F //

◆
✏✏

D
Open(P)op lim � F(p)

99

This extension is nice for many reasons. By using limits to define data on larger open
sets we have forced the sheaf axiom to hold, so this extension is in fact a sheaf. Moreover
it illustrates through example a more general concept, which we now define.

Remark 4.2.7 (Caveat). We will make use of Kan extensions at a few points throughout
the paper, but its immediate application is a theorem that says functors out of posets can
be identified with sheaves. The proof of this theorem is described casually without the
language of Kan extensions in [Lad08], but adopting this language will be powerful and
will make certain categorical properties transparent.
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Definition 4.2.8 (Kan Extensions). Suppose B, C and D are categories, F : B ! D and
E : B ! C are functors, then the right Kan extension of F along E written R = RanEF :C ! D is a functor and a natural transformation ✏ : RE ! F that is universal in the
following sense. For every functor H : C! D with a natural transformation ↵ : H �E! F
there exists a unique natural transformation � : H! R, i.e. Nat(H,R) ⇠= Nat(H � E, F).

B F //

E
✏✏

D
C R=Ran

E

F

??

The left Kan extension of F along E written L = LanEF : C ! D is a functor with a
natural transformation ⌘ : F ! L � E that is universal as well. If H : C ! D is a functor
with a natural transformation ! : F ! H � E, then there exists a unique ⌧ : L ! H, i.e.
Nat(L,H) ⇠= Nat(F,H � E). B F //

E
✏✏

D
C L=Lan

E

F

??

Remark 4.2.9 (Existence of Kan Extensions). Kan extensions do not always exist, but we
have already alluded to a situation where they do. If D has enough limits and colimits,
then we can give point-wise formulae for the left and right Kan extensions respectively:

LanEF(c) := lim�!
E(b)!c

F(b) RanEF(c) := lim �
c!E(b)

F(b)

One of the reasons that sheaves and cosheaves on Alexandrov spaces are so well-
behaved is that every open set has a finest cover, so in particular, by Corollary 2.4.4, we
only need to check the (co)sheaf axiom on this cover, and it will be guaranteed for all
others. Furthermore, every point in an Alexandrov space has a smallest open neighbor-
hood, and the (co)stalks are just the values on these minimal open sets. This is how we
can use Kan extensions to create a dictionary between (co)sheaves on Alexandrov spaces
and functors out of posets.

Theorem 4.2.10. Let P be a poset and D a category that is both complete and co-complete.
Then the following categories are equivalent

Fun(P, D) ⇠= Shv(P; D) Fun(Pop, D) ⇠= CoShv(P; D)

Proof. We claim that taking the right Kan extension of F : P ! D along the inclusion
◆ : P ! Open(P)op produces a sheaf. Suppose U is an open set in the Alexandrov
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topology, i.e. one for which p 2 U and p 6 p 0 ) p 0 2 U. It is true that every open set
can be expressed as a union U = [p2UUp and thus the finest possible cover is {Up}p2U.
The right Kan extension then defines F(U) := F[{Up}p2U] so the sheaf axiom holds for
that cover, but by Corollary 2.4.4, this means that F is a sheaf. To go from a sheaf to
the diagram, one simply takes stalks at every point. Since the smallest neighborhood
containing p is Up, we get that Fp = F(Up) = F(p).

The dual argument for cosheaves is completely analogous: we take the left Kan ex-
tension of bF : Pop ! D along the inclusion ◆ : Pop ! Open(P) to get a cosheaf. Taking
costalks returns a diagram from a cosheaf.

Remark 4.2.11 (Stalks and Costalks on Posets). To elaborate on the proof, let us compute
some invariants. Recall that the stalk and costalk at a point p 2 P for a sheaf and cosheaf
respectively is described via the use of filtered colimits and limits.

Fp := lim�!
U3p

F(U) and bFp := lim �
U3p

bF(U)

In both cases when P is a poset with the Alexandrov topology there is a smallest open
set containing p, namely Up = {q|p 6 q}, so Fp ⇠= F(Up) = F(p) and bFp = bF(Up) = bF(p).

Definition 4.2.12 (Sections). Let (P,6) be a poset and F : P ! D a sheaf and bF : Pop ! D.
let Z ⇢ P be any subset. We define the sections over Z to be

�(Z; F) := lim � F|Z and lim�!
bF|Z =: �(Z;bF).

When Z = P, we call these global sections. Note that �(Z;-) is context dependent:
different definitions are used pending whether a sheaf or cosheaf is used.

The above theorem provides the simplest explanation of why cellular sheaves and
cosheaves deserve to be called sheaves and cosheaves. When Theorem 4.2.10 is spe-
cialized to the face relation poset PX of a cell complex, also called the cell category
PX = Cell(X) in Definition 4.1.3, we get that the category of sheaves in Definition 4.1.10.
We summarize these observations in the following corollary.

Corollary 4.2.13. Let (X,PX) be a cell complex. A cellular sheaf on X is a sheaf on
PX equipped with the Alexandrov topology. Such a sheaf is uniquely determined by a
functor F : PX ! D. A cellular cosheaf on X is a cosheaf on PX with the Alexandrov
topology. Such a cosheaf is uniquely determined by a functor bF : Pop

X ! D.

To close, we point out one of the symmetries that Alexandrov spaces possess.

Claim 4.2.14. In the Alexandrov topology, arbitrary intersections of open sets are open
and arbitrary unions of closed sets are closed. Thus, every Alexandrov space possesses
a dual topology by exchanging open sets with closed sets.
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This observation would have pleased Leray. It demonstrates that one can also think of
a functor F : P ! D on a poset as either a sheaf or as a “cosheaf on closed sets.” What
distinguishes these two though is whether we use limits or colimits to extend to larger
sets. We will consider this perspective in greater detail in Section 5.1.4.



5
F U N C T O R S A S S O C I AT E D T O M A P S

“Qui sème le foncteur récolte la structure.”1

— Bourbaki

Since sheaves and cosheaves as defined here assign data to open sets, maps between
spaces should only make reference to open sets. In Section 2.5.2 we briefly introduced
how to pushforward or pullback a sheaf along a map between spaces. In the case where
our spaces are partially ordered sets endowed with the Alexandrov topology, it suffices
to work directly with points since they are in bijection with a basis for the topology.
However, playing these perspectives off of each other adds depth to the theory. In par-
ticular, by restricting our attention to these spaces, and using Kan extensions, we define
the basic functors on (co)sheaves without making use of (co)sheafification. Pedagogi-
cally this is advantageous because the operation of sheafification tends to obfuscate the
underlying ideas of sheaf theory. The lack of an explicit cosheafification process has
historically been a stumbling block for the theory.

Recall that the definition of a continuous map f : X! Y says that the inverse image of
an open set of Y is an open set of X. This observation can be expressed by saying that
we have a functor

f̊ : Open(Y)! Open(X) U ✓ Y  f-1(U) ✓ X.

By formality, we also have a functor from the corresponding opposite categories

f̊ : Open(Y)op ! Open(X)op.

1 “Who sows the functor reaps the structure.”

79
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We have purposely suppressed the op superscript on f̊ for legibility. Now suppose we are
given a pre-sheaf G on X, then we get a naturally associated pre-sheaf on Y by observing
that the diagram Open(X)op G // D

Open(Y)opf̊

OO ::

has a natural completion given by pre-composition.

Definition 5.0.15 (Pushforward Sheaf and Cosheaf). Suppose f : X ! Y is a continu-
ous map of spaces, G and bG a pre-sheaf and pre-cosheaf respectively, then define the
pushforward or direct image pre-sheaf and pre-cosheaf via f⇤G(U) := G(f-1(U)) and
f⇤ bG(U) := bG(f-1(U)). Because f-1 commutes with unions, we get that if G or bG is a
sheaf or cosheaf, then so is the pushforward. Moreover, this operation is functorial with
respect to maps between (co)sheaves, so we get functors

f⇤ : Shv(X; D)! Shv(Y; D) f⇤ : CoShv(X; D)! CoShv(Y; D).

There is also a pullback functor associated to a continuous map f : X ! Y, but it’s
construction is less obvious. Namely, if G is a pre-sheaf on Y, then there is no clear way
to define a pre-sheaf on X because for an open set on X, f(U) may not be open. The
solution usually used is to take a system of approximations of f(U) by open sets and to
define the pullback sheaf as the limit of these approximations.

f⇤G(U) := lim�!
V�f(U)

F(V).

Thinking categorically, the problem of “approximation” has been encountered before.
Namely, how can we complete the following diagram?

Open(Y)op G //

f̊
✏✏

D
Open(X)op ?

::

Again, by assuming that D has sufficient colimits, we can could fill in the diagram by
taking the left Kan extension of G along f̊ and that will yield the candidate formula for
the pullback just presented. Unfortunately, this definition for the pullback of a sheaf
does not always define a sheaf. In sheaf theory over general spaces, this defect is circum-
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vented by sheafification, as in Section 2.5.2. Fortunately, for the Alexandrov topology,
this circumvention is unnecessary.

5.1 maps of posets and associated functors

As already noted, sheaves and cosheaves on posets are easier to manipulate. The functors
associated to a map of posets are explicitly defined without extra processing. Since
posets can be made into a topological space the functors which exist for sheaves on
general spaces can be studied here is a more tightly controlled laboratory. Moreover,
since Alexandrov spaces have extra symmetries new functors not normally encountered
exist here.

Definition 5.1.1 (Map of Posets). Suppose (X,6X) and (Y,6Y) are posets. A map of
posets is a map of sets f : X! Y that is order-preserving, i.e. if x 6X x 0 then f(x) 6Y f(x 0).
Alternatively, since a poset can be viewed as a category, a map of posets is just a functor.
When it is clear from context we will abbreviate (X,6X) by just X.

Remark 5.1.2 (Notation and Cell Complexes). In our effort to treat posets as spaces,
we have used X and Y to denote partially ordered sets equipped with the Alexandrov
topology. This might cause confusion since our canonical example of a poset will be the
indexing poset of a cell complex (X,PX). Note that cell complexes consist of a pair of
spaces, one is X, the Hausdorff space that is partitioned into pieces X�, the other is PX,
the poset of labels �. From here on out we will work primarily with the poset PX as this
is the combinatorial approximation to X. Thus, keeping in line with Shepard [She85], we
change our notation from (X,PX) to (|X|,X). Thus we have the following dictionary:

Dictionary Old Notation New Notation
Underlying Hausdorff Space X |X|

Underlying Alexandrov Space PX X

Set of Points in a “Cell” X� |�|

“Cell” viewed as a point � �

Cellular Sheaf F : PX ! D F : X! D
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5.1.1 Pullback or Inverse Image

Recall that a sheaf on a poset (Y,6Y) is a functor G : Y ! D. Similarly, a cosheaf is a
functor bF : Yop ! D. For both structures the pull-back functor f⇤ is easily described. It is
the obvious pre-composition that completes the following diagram.

Y G // D
X

f

OO ??

Definition 5.1.3 (Pullback for Poset Maps). Given a sheaf G on Y and a map of posets
f : X! Y, we can define the pullback or inverse image sheaf f⇤G on X as follows:

• f⇤G(x) = G(f(x))

• If x 6 x 0, then let ⇢f⇤Gx 0,x = ⇢Gf(x 0),f(x)

• If ⌘ : G ! H is a morphism in Shv(Y), i.e. a natural transformation of diagrams
over Y, then f⇤⌘ : f⇤G! f⇤H is a morphism in Shv(X) defined by declaring f⇤⌘(x) :
f⇤G(x)! f⇤H(x) to be equal to ⌘(f(x)) : G(f(x))! H(f(x)).

The same definition and arguments go through for a cosheaf on Y with suitable modi-
fication, i.e rf

⇤G
x,x 0 = rGf(x),f(x 0). Thus, we get functors

f⇤ : Shv(Y; D)! Shv(X; D) f⇤ : CoShv(Y; D)! CoShv(X; D).

The definition of the pullback seems almost too good to be true, but one can check
that the pre-sheaf description we outlined earlier agrees with this definition. Observe
that if one applies that definition then

f⇤F(Ux) := lim�!
V�f(U

x

)

F(V) ⇠= F(Vf(x)) = F(f(x)),

where we have used the fact that the smallest open set containing f(Ux) = f({x 0|x 6 x 0})
is Vf(x) = {y|f(x) 6 y}.

Example 5.1.4 (Constant Sheaf and Cosheaf). Consider the constant map p : X ! ?. A
sheaf G on ? consists of a single vector space W and the identity morphism so we’ll just
call G by the name W. We define the constant sheaf on X with value W to be WX := p⇤W.
One sees that it is a sheaf that assigns W to every cell with all the restriction maps being
the identity. Similarly, the constant cosheaf with value W is ŴX := p⇤W.
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5.1.2 Application: Subdivision

In the case where the poset is the face relation of a cell complex certain natural maps
present themselves, such as subdivision.

Definition 5.1.5 ([She85] 1.5, p.29). A subdivision of a cell complex X is a cell complex
X 0 with |X 0| = |X| and where every cell of X is a union of cells of X 0.

Untangling the definition a bit we see that if � is a cell of X, then there is a collection
of cells {� 0i} such that [i|� 0i| = |�|. As such, we can define a surjective map of posets
s : X 0 ! X defined by making s(� 0) = � if |� 0| ✓ |�|.

Claim 5.1.6. Subdivision of a cell complex X induces an order preserving map s : X 0 ! X
of the corresponding face-relation posets.

Proof. The ordering on X 0 is given by the face relation. Suppose � 0 6 ⌧ 0, then either
s(� 0) = s(⌧ 0) or not. If not, then � 0 and ⌧ 0 belong to the subdivision of two cells � 6 ⌧.

We are going to use this fact to define the subdivision of a sheaf in a cleaner manner
than is found in [She85].

Definition 5.1.7. Suppose F is a sheaf on X and s : X 0 ! X is a subdivision of X, then we
define the subdivided sheaf F 0 := s⇤F.

5.1.3 Pushforward or Direct Image

By adopting a point-theoretic picture rather than an open set-theoretic picture of sheaves
and cosheaves over posets, we got an easy definition for the pullback functor. In the
introduction we outlined a general definition for the pushforward functor f⇤ on sheaves
and cosheaves on an arbitrary topological space. Interestingly enough, although f⇤ had
a simple description using open sets, the point-level description requires thought.

Definition 5.1.8 (Pushforward for Poset Maps). Given a sheaf F on X and a map of posets
f : X! Y we can define a sheaf on Y as follows:

• The pushforward of a sheaf is the right Kan extension of F along f, i.e. RanfF.

f⇤F(y) = lim �
f(x)>y

F(x)

• Suppose y 6 y 0, then {x|f(x) > y 0} ✓ {x|f(x) > y}. Any limit over the bigger set
defines a cone over the smaller set by restriction, thus the universal property of
limits guarantees the existence of a unique map f⇤F(y) ! f⇤F(y 0) that we will call
⇢f⇤Fy 0,y.
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• Suppose ⌘ : F ! G is a map of sheaves, i.e. a natural transformation of diagrams
over X. Then for any sub-poset U of X, post-composing the limit over U of F with
the arrows in the natural transformation defines a cone over G restricted to U. By
the universal property of limits there must be an induced map.

lim �
x2U

F! lim �
x2U

G

For cosheaves, the dual arguments go through with the slight modification that we
use the left Kan extension along fop : Xop ! Yop.

f⇤bF(y) := lim�!
f(x)>y

bF(x).

Since both of these constructions are functorial, we have redefined two functors:

f⇤ : Shv(X; D)! Shv(Y; D) f⇤ : CoShv(X; D)! CoShv(Y; D)

Example 5.1.9 (Global Sections). This functor is extremely useful as it gives us a way of
defining the global sections of a sheaf or a cosheaf. For the constant map p : X ! ? we
offer the following definitions:

p⇤F(?) ⇠= F(X) = �(X; F) = H0(X; F) p⇤bF(?) ⇠= bF(X) = �(X;bF) = H0(X;bF)

In Section 7 we will use this definition as the prototype for defining “higher” pushfor-
ward or direct image functors.

5.1.4 f†, Pushforwards and Closed Sets

One of the advantages of describing the standard functors of sheaf theory in the setting
of posets is the presence of extra symmetries. Abstract definitions lend themselves to
being dualized. In particular, in our point-theoretic definition of the pushforward we
made use of Kan extensions, which come in two variants: left and right. In this section
we consider the other variant and give a topological explanation for its origin.

Remark 5.1.10 (Caveat). The functor f† defined below is the left adjoint to f⇤ (for
cosheaves it will be the right adjoint). There seems to be a strong trend to call the left
adjoint of f⇤ by a different name: f!. According to Joel Friedman ([Fri11] p. 22) the
tradition goes back to Grothendieck in [AGV72] SGA Exposé I, Proposition 5.1. The
same notation is used by Ladkani [Lad08], Lurie, Beilinson, Bernstein and others.
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This is unfortunate, since the notation f! is perhaps even more firmly established for
the pushforward with compact supports functor used in classical sheaf theory. The
reason seems to be that for general sheaves, there is no left adjoint to f⇤, so it would be
clear from context which was meant. However, for cellular sheaves, both functors exist
and are useful.

Definition 5.1.11 (Pushforward with Open Supports). Given a sheaf F on X and a map
of posets f : X! Y we can define a sheaf on Y as follows:

• The pushforward with open supports of a sheaf is the left Kan extension of F along
f, i.e. LanfF.

f†F(y) = lim�!
f(x)6y

F(x)

• If y 6 y 0, then {x|f(x) 6 y} ✓ {x|f(x) 6 y 0} and since any colimit over the bigger
set defines a cocone over the smaller set by restriction, we get a unique map ⇢f†Fy 0,y :

f†F(y)! f†F(y
0).

• If we have a map of sheaves ⌘ : F! G, then pre-composing the arrows for colimG
with ⌘ defines a co-cone over F. By universal properties we get an induced map

lim�!
x2V

F! lim�!
x2V

G.

Dually, for cosheaves we use the right Kan extension along fop.

f†bF(y) := lim �
f(x)6y

bF(x)

Both of these constructions are functorial and thus we have defined two functors:

f† : Shv(X; D)! Shv(Y; D) f† : CoShv(X; D)! CoShv(Y; D)

This functor appears to be quite unusual, despite its naturality from the categorical
perspective. To explain its topological origin, we revisit some of the original ideas of
Alexandrov.

When Alexandrov first defined his topology he did two things differently:

1. He only defined the topology for finite posets.

2. He defined the closed sets to have the property that if x 2 V and x 0 6 x, then x 0 2 V .
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Let us repeat the initial analysis of sheaves and diagrams indexed over posets, where we
now put closed sets on equal footing with open sets. Observe that as before we have an
inclusion functor:

j : (X,6)! Closed(X) x x̄ := {x 0|x 0 6 x}

Consequently, we have a similar diagram for a functor F : X! D as before.

X F //

j
✏✏

D
Closed(X) ?
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If we choose the left Kan extension, we’d like to say the extended functor is a cosheaf
on closed sets, i.e. use the definition of a cosheaf but replace open sets with closed sets.
Unfortunately, this concept is not well defined for general topological spaces because the
arbitrary union (colimit) of closed sets is not always closed. For Alexandrov spaces this
property does hold and this illustrates one of the extra symmetries this theory possesses.

However, in order for the Kan extension to take a diagram and make it into a cosheaf,
we need to know whether the image of the inclusion functor defines a basis for the closed
sets. In Example 4.2.4 we showed that this is not always the case. The topology generated
by the image of this functor is called the specialization topology and it suffers from
certain technical deficiencies. In particular, order-preserving maps are not necessarily
continuous in this topology, thus it fails to give a functorial theory. Fortunately, for finite
posets these topologies agree and we can talk about cosheaves on closed sets without
any trouble.

We now can give a topological explanation for the existence of the functor f†. It is the
functor analogous to ordinary pushforward where we have adopted closed sets as the
indexing category for cosheaves and sheaves. If f : X ! Y is a map of posets, then fc

is the induced map between closed sets. The dagger pushforward is then the obvious
completion of the diagram. Closed(X) F // D

Closed(Y)fc

OO

f†F

::

In Section 7.4 this functor provides the foundation for defining sheaf homology and
cosheaf cohomology — theories that don’t exist for general spaces.
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5.1.5 f!: Pushforward with Compact Supports on Cell Complexes

The three functors f⇤, f⇤ and f† induced by a map of posets are well defined for any
poset and any diagram. However, when Shepard wrote his thesis the only posets that
he considered were posets coming from cell complexes. By working in this smaller class
and imitating the theory of constructible sheaves, Shepard described another functor that
is not defined for arbitrary Alexandrov spaces: the pushforward with compact supports
f!.

This fourth functor is meant to provide a cellular (constructible) analog of a functor nat-
urally defined for sheaves on more general topological spaces and the name is borrowed
from there. The reader must keep this in mind since every set in a finite Alexandrov
space is compact. Thus, when we say “pushforward with compact supports” we mean
a discrete model for the pushforward with compact supports functor defined for locally
compact Hausdorff spaces.

Following Shepard, this functor f! will only be defined for cellular maps, which are
stratified (or even definable) maps naturally adapted to cell complexes.

Definition 5.1.12 (Cellular Map [She85] pg. 32). Let X and Y be cell complexes. A
cellular map (|f|, f) consists of a map of posets f : X ! Y and a continuous “geometric”
map |f| : |X|! |Y| satisfying the following compatibility conditions:

1. For every � 2 X, |f|(|�|) is the cell |f(�)|.

2. The restricted map |f||�| : |�| ! |f(�)| is the projection Rn+k ! Rn onto the first n
coordinates.

3. Given � 2 X and y, z 2 |f(�)|, |f|-1(y)\ ¯|�| is compact if and only if |f|-1(z)\ ¯|�| is.

Remark 5.1.13. The first and second conditions clearly restrict the types of maps of
posets that can be considered. It appears that the third condition is redundant given the
first two, but this is how it is recorded in Shepard’s thesis.

Example 5.1.14. Let X = [0, 1) be given the cell structure x = 0 and b = (0, 1). Let
Y = [0, 1)⇥ [0, 1) be given the simplest possible cell structure. The underlying posets for
these spaces are as follows:

b

x

?? �

a

??

b

__

x

__

OO

??
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Here x refers to the vertex, a and b the open edges, and � is the open face. Clearly,
f(x) = a and f(b) = � would be a map of these posets, but it is not a cellular map.

The definition of f! uses kernels and other standard linear algebra operations. As such,
we now assume D = Vect and suppress it from our notation.

Definition 5.1.15 (Pushforward with Compact Supports). Given a sheaf F on X and a
cellular map f : X! Y, we can define the pushforward with compact supports sheaf on
Y as follows:

• f!F(⌧) = {s 2 �(f-1(⌧); F) | s(�) = 0 if |�̄|\ f-1(y) not compact for y 2 |⌧| }

• Let � 6 ⌧ be cells in Y, and let s 2 f!F(�) and t 2 f!F(⌧). We define ⇢f!F
⌧,�(s) = t if for

every � 2 f-1(⌧) and every � 2 f-1(�) such that � 6 � ⇢F�,�(s(�)) = t(�). If there is
no such t 2 f!F(⌧) then we define ⇢f!F

⌧,�(s) = 0.

The notation �(-; F) for sections is explained in Definition 4.2.12. The verification that
f!F is actually a sheaf and that it is functorial, is much more drawn out and is done in
detail in [She85] pp. 35-38. As such we have defined a functor

f! : Shv(X)! Shv(Y)
Remark 5.1.16 (Compact Supports for Cosheaves). The definition for cosheaves cannot
be written so simply because the vector space of “compactly supported” sections of a
cosheaf, is a quotient of the space of all sections. The simplest definition would be,
assuming bF : Xop ! vect, to take transposes and turn bF into a sheaf F and apply the
definition above. We will not make use of the cosheaf version of this functor.

5.2 calculated examples

In this section we compute explicit examples of the functors defined above. To avoid
clutter, we consider only sheaves and leave it the reader to dualize and check the corre-
sponding functors on cellular cosheaves. We further assume that D = Vect and leave it
as implicit that all operations are to be performed in vector spaces.

The notation 2 will be a place holder for any one of the three symbols ⇤, †, !.

5.2.1 Projection to a point

We consider the constant map p : X ! ?. The output of p2F is a single vector space,
namely p2F(?).

Without too much effort we compute the following:
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x’! a’!
X=! =Y!

p!

figure 17: Projection to a Point

• p⇤F = lim �{F(x
0)! F(a 0)} ⇠= F(x 0)

• p† = lim�!{F(x 0)! F(a 0)} ⇠= F(a 0)

For the pushforward with compact supports, we will be extra careful. Recall the
definition states that p!F(⌧) = {s 2 �(p-1(⌧); F)|s(�) = 0 if |�̄|\ p-1(y)not compact fory 2
|⌧|}.

In our example y can be the only point ? and p-1(?) = X. Thus we have only two
cells to check whether their closures are compact or not. Clearly x̄ 0 = x 0 is compact, but
ā 0 = X is not compact. The definition then says that we only allow sections whose value
on a 0 is zero.

• p!F = ker(⇢x 0,a 0 : F(x 0)! F(a 0))

5.2.2 Inclusion into a Closed Interval

Here we encounter an open inclusion j : X! Y. The first thing to note is that in this case,
the value of j!F is not going to change since either j-1(y) = {x} or it is empty. Since points
are closed and bounded, the compactness condition on |�̄|\ {j-1(y)} is always satisfied.

x’! a’!
X=! =Y!

x! a! y!j!

figure 18: Inclusion into a Closed Interval

We see in this example that

• j⇤F(x) = lim �{F(x
0) ! F(a 0)} ⇠= F(x 0), j⇤F(a) = F(a 0), and less intuitively, j⇤F(y) ⇠=

F(a 0).

• j†F(x) = F(x 0), j†F(a) ⇠= F(a 0), and j†F(y) = lim�!{;} = 0.

• j!F ⇠= j†F.
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5.2.3 Map to a Circle

Here is an example where the function is bijective and continuous (in both topologies),
but not an embedding, i.e. the domain is not homeomorphic with its image.

x’! a’!
X=!

x!

y!

a! b! =Y!
f!y’! b’!

figure 19: Map to a Circle

All three sheaves agree on the values and the restriction maps f2F(y) ⇠= F(y 0) !
F(a 0) ⇠= f2F(a). We concentrate on the other two cells.

• Here diagram we are taking the limit over is disconnected because the inverse
image of the star of x in Y is disconnected. Consequently, f⇤F(x) = lim �{F(x

0) !
F(a 0) F(b 0)} ⇠= F(x 0)� F(b 0) and f⇤F(b) = F(b 0).

• Here f†F(x) = F(x 0), but for similar reasons as before f†F(b) = lim�!{F(x 0) F(y 0) !
F(b 0)} = F(x 0)� F(b 0).

• As noted, f is injective thus the value of f!F on any cell in the image is un-changed.
However, we need to pay careful attention to how the restriction map is defined.
The map f is injective so the fiber over a is a 0 and over x is x 0, but x 0 ⇥ a 0 so the
restriction map must be zero.

5.3 the push-pull adjunctions

Recall from Section 1.5 that adjunctions allow us transform a complicated problem into
an easy one. To derive these adjunctions, we can take two approaches: Use Freyd’s
adjoint functor theorem 1.5.2, or explicitly construct the adjunction. Since in our con-
struction of the functors associated to a map, we made explicit use of limits and colimits,
corresponding to the right and left Kan extensions respectively, and (co)limits commute
with (co)limits, the following theorems are automatic. However, we check them explicitly
for sheaves and leave the dual proof for the reader to fill out on their own.
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Theorem 5.3.1. The functors f⇤ : Shv(Y) ! Shv(X) and f⇤ : Shv(X) ! Shv(Y) form an
adjoint pair (f⇤, f⇤) and thus

HomShv(X)(f⇤G, F) ⇠= HomShv(Y)(G, f⇤F).

Dually, the functors for cosheaves satisfy the opposite adjunction (f⇤, f⇤)

HomCoShv(Y)(f⇤bF, bG) ⇠= HomCoShv(X)(bF, f⇤ bG).

Proof. Recall that f⇤(f⇤F)(x) = (f⇤F)(f(x)). Using the fact that (f⇤F)(f(x)) = lim �{F(z)|f(z) >
f(x)}, we get a map to F(x) since x 2 f-1(f(x)) and this morphism is final for each x. This
implies there is a natural transformation of functors f⇤ � f⇤ ! id, which is universal
(final).

Similarly, f⇤(f⇤G)(y) = lim �{f
⇤G(x) = G(f(x))|f(x) > y} and since y 6 f(x) we can

use the restriction map ⇢Gf(x),y : G(y) ! G(f(x)). The universal property of the limit
guarantees a map G(y) ! lim �G(f(x)) = f⇤f⇤G(y) and thus a natural transformation of
functors id! f⇤f⇤.

Theorem 5.3.2. The functors f† : Shv(X) ! Shv(Y) and f⇤ : Shv(Y) ! Shv(X) form an
adjoint pair (f†, f⇤) and thus

HomShv(Y)(f†F,G) ⇠= HomShv(X)(F, f⇤G).

Dually, the functors for cosheaves satisfy the opposite adjunction (f⇤, f†)

HomCoShv(X)(f⇤ bG,bF) ⇠= HomCoShv(Y)(bG, f† bG).

Proof. f†(f
⇤G)(y) = lim�!{G(f(x))|f(x) 6 y} so again we can use the restriction maps to

define maps to G(y). The universal property of colimits gives a map f†f
⇤G(y) ! G(y)

and thus a map of functors f†f
⇤ ! id. Similar arguments give a map id! f⇤f†

To conclude, we derive the first interesting consequence of an adjunction. In effect it
reduces all the possible natural transformations between a certain pair of functors to a
single vector space.

Proposition 5.3.3. If F : X! Vect is a sheaf and p : X! ? is the constant map, then

HomShv(X)(p⇤k, F) ⇠= HomVect(k,p⇤F) ⇠= F(X) = H0(X; F).

Proof. The first isomorphism is the adjunction (p⇤,p⇤). The second isomorphism is
simply the observation that every linear map is determined by where it sends 1, i.e.
HomVect(k,W) ⇠= W.
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H O M O L O G Y A N D C O H O M O L O G Y

“The de Rham complex may be viewed as a God-given set of differential equations,
whose solutions are the closed forms.... A measure of the size of the space of ‘interest-
ing’ solutions is the definition of the de Rham cohomology.”

— Raoul Bott and Loring Tu [BT82, p. 15]

In Section 4.2 and Chapter 5 we worked over arbitrary posets. We did this because
it was natural and some applications may need this level of generality. In this section,
we eschew this generality and restrict ourselves to posets arising as the face relation
of a finite cell complex. This is beneficial not only because cell complexes are of great
interest, but because sheaves and cosheaves over them have easily defined cohomology
and homology theories.

We will start by describing a simple generalization of cellular cohomology and homol-
ogy where we have augmented the coefficients by placing vector spaces over individ-
ual cells and linear maps between incident cells. This is a generalization in the sense
that if one restricts to the case where every cell is assigned the one-dimensional vector
space k and all the incident linear maps are the identity, we recover classical cellular
(co)homology. However interesting this special case may be, it misses a theory general
enough to compute homological invariants of data varying over a cell complex.

The theory presented is combinatorial and computable. One needs only a good work-
ing knowledge of linear algebra to be able to use it. However, one can compute cellular
sheaf cohomology without understanding it. To clarify the meaning of these computa-
tions we adopt a representation-theoretic perspective. This allows us to break up sheaves
and cosheaves into the basic building blocks of indecomposable representations of the
cell category. Thus, borrowing terminology from the persistent homology community,
we use “generalized barcodes” to see the topology of data in a wider world of applica-
tions. These ideas are be put into practice in Chapters 8, 9, and 10, where many examples
are considered.

92
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6.1 chain complexes and homology

Definition 6.1.1. A Z-graded vector space V⇤ is a collection of vector spaces {Vi}i2Z

with one for each integer. A graded map is a collection of linear maps f : Vi !Wi. The
category of Z-graded vector spaces, grVect, has graded vector spaces V⇤ for objects and
graded maps for morphisms.

A (co)chain complex is a graded vector space with extra structure.

Definition 6.1.2. A cochain complex consists of a collection of vector spaces called
cochain groups {Vi}i2Z and a collection of linear maps called differentials di : Vi ! Vi+1

that satisfy di+1 � di = 0 for every i 2 Z. We denote a cochain complex by (V•,d•). Al-
ternatively said, a cochain complex is a graded vector space equipped with a degree one
increasing map that when composed twice gives the zero map.

A chain complex is a cochain complex with different notation. The chain groups
{Vi}i2Z and boundary maps @i : Vi ! Vi-1 are decorated with subscripts; this is the only
difference. The maps satisfy @i-1 � @i = 0 for every i 2 Z. We denote a chain complex by
(V•,@•).

Remark 6.1.3. Since chain complexes and cochain complexes are the same thing, merely
dressed up in different notation, we will usually just say “Let (V•,d•) be a chain complex”
and let the mathematical notation be precise. As an aside, one can also say that a chain
complex is homologically indexed if it is written as (V•,@•) or cohomologically indexed if it is
written as (V•,d•).

Remark 6.1.4. Sometimes we drop the subscript or superscript • and write (V ,@) or
(V ,d) to refer to a chain complex or cochain complex. Dropping the superscript can
lead to overloaded notation. For example, the expression d2 = 0 is a synonym for “d
is a differential,” i.e. di+1 � di = 0 for ever i 2 Z, but it could also mean that the map
V2 ! V3 is zero. This is one of the perils of cohomological indexing for chain complexes,
but the ambiguity is resolved by scoping the context. If we are speaking at the high-level
of viewing a chain complex as a different sort of structure, then the former interpretation
is intended. If we are talking about the particulars of a given chain complex, then the
latter is meant.

Definition 6.1.5. The category of chain complexes, Ch•(Vect), has chain complexes for
objects, and chain maps f• : (V ,dV) ! (W,dW) for morphisms, i.e. a collection of maps
fi : Vi !Wi such that fi+1 � di

V = di
W � fi.

There is a natural functor ◆ : grVect! Ch(Vect) that treats a Z-graded vector space as
a chain complex with zero differentials, i.e.

{Vi}i2Z  (V•, 0)
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Taking cohomology of a chain complex defines a functor going the other way.

Definition 6.1.6. Cohomology is a functor H⇤ : Ch(Vect) ! grVect, which takes a chain
complex (V ,d) and places the quotient vector space

Hi(V ,d) := ker(di)/im(di-1)

in degree i. Without too much work one can show that a chain map f• induces maps
of the associated cohomology spaces Hi(f) : Hi(V ,dv) ! Hi(W,dw), making H⇤ into a
functor.

6.1.1 The Combinatorics of Cell Complexes and Homology

The motivation for chain complexes and homology comes from computing invariants of
topological spaces. As already indicated, posets can be regarded as topological spaces,
but not every poset has the nice structure that the face-relation poset of a cell complex
has. This nice structure is what determines whether certain sequence of vector spaces
and maps defines a chain complex.

Definition 6.1.7. We write � 6i ⌧ if the difference in dimension of the cells is i.

Lemma 6.1.8. If � 62 ⌧, then there are exactly two cells �1, �2 where � 61 �i 61 ⌧.

We want to invent a sign condition that distinguishes these two different sequences of
incidence relations.

⌧

�1

>>

�2

``

�

`` >>

Definition 6.1.9 (Signed Incidence Relation). A signed incidence relation is an assign-
ment to any pair of cells �, ⌧ 2 X a number [� : ⌧] 2 {0,±1} such that

• if [� : ⌧] 6= 0, then � 6161 ⌧, and

• if � and ⌧ are any pair of cells, the sum
P

�[� : �][� : ⌧] = 0.

One way to get a signed incidence relation is to choose a local orientation (via the
homeomorphism of each cell |�| with Rk) for each cell without regard to global consis-
tency. Then for every pair of incident cells � 6 ⌧ we have a number [� : ⌧] = ±1 given
by +1 if the orientations agree and -1 otherwise.



6.2 computational sheaf cohomology and cosheaf homology 95

Another way is motivated by working with regular cell complexes, where we can
subdivide so that we have a simplicial complex. We can refer to any cell by a list of
its vertices. If we order the set of vertices, then we have a procedure for orienting the
cells. A local orientation of a cell � 2 X consists of divvying up the set of ordered lists
representing � into classes each of which are invariant under even permutations. We
can then pick the class with the list of vertices in increasing order as “the” orientation.
Either method enables us to define a chain complex associated to a cell complex.

Proposition 6.1.10 (Cellular Cohomology). Let X be a cell complex equipped with a sign
relation. Let Cn(X;k) be the vector space spanned by the n-dimensional calls of X. We
define a map � : Cn ! Cn+1 on the basis by defining �(�) =

P
⌧[� : ⌧]⌧. Clearly �2 = 0.

6.2 computational sheaf cohomology and cosheaf homology

We now provide formulae for computing cellular sheaf cohomology and cellular cosheaf
homology that is completely analogous to cellular cohomology.

6.2.1 Cellular Sheaf Cohomology

Definition 6.2.1 ([Zee62a, She85]). Given a cellular sheaf F : X ! Vect we define its
compactly supported k co-chains to be the product1 of the vector spaces residing over
all the k-dimensional cells.

Ck
c(X; F) =

M

�k

F(�k)

These vector spaces are graded components in a complex of vector spaces C•
c(X; F). The

differentials are defined by
�kc =

X

�6⌧
[�k : ⌧k+1]⇢⌧,�.

The cohomology of this complex

0 // �F(vertices)
�0
c // �F(edges)

�1
c // �F(faces) // · · · = C•

c(X; F)

is defined to be the compactly supported cohomology of F, i.e. Hk
c(X; F) = ker �kc/im�k-1

c .

Lemma 6.2.2. (C•
c(X; F), �•c) is a chain complex.

1 Here we implicitly assume that X has finitely many cells in a given dimension so products and direct
sums agree.
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Proof. To see why the chain complex condition �k+1
c �kc = 0 is assured, Lemma 6.1.8 is

crucial. This is the very same lemma that proves that ordinary cellular homology is
computed via a chain complex. One must now observe that varying data over the cells
does not change the result.

�c�c =
X

�6
1

⌧

[� : ⌧]⇢⌧,�(�c)

=
X

�6
1

⌧

[� : ⌧]⇢⌧,�(
X

�6
1

�

[� : �]⇢�,�)

=
X

�6
1

�6
1

⌧

[� : ⌧]⇢⌧,�⇢�,�

=
X

�6
1

�6
1

⌧

[� : ⌧]⇢⌧,�

=
X

�6
1

�6
1

⌧

([� : �1][�1 : ⌧] + [� : �2][�2 : ⌧])⇢⌧,�

= 0

To define the arbitrarily-supported cochain complex associated to a cellular sheaf F on
X, we simply remove all the cells from X without compact closures and apply the same
formula.

Definition 6.2.3 (Ordinary Cohomology). Let X be a cell complex and F : X! Vect a cel-
lular sheaf. Let j : X 0 ! X be the subcomplex consisting of cells that do not have vertices
in the one-point compactification of X. Define the ordinary cochains and cohomology by

C•(X; F) = C•
c(X

0; j⇤F) Hi(X; F) := Hi
c(X

0; j⇤F)

The situation may seem a bit unusual. The naturally defined chain complex computes
a more restrictive type of cohomology. To get the standard cohomology, one needs to
remove non-compact cells. When we define cohomology via the derived perspective of
Section 7, this quirk of linear algebra disappears. Ordinary cohomology will fall out nat-
urally using limits and injective resolutions, and compactly-supported sheaf cohomology
will require some finesse.

Example 6.2.4 (Compactly Supported vs. Ordinary Cohomology). To see why the naïve
chain complex computes compactly supported cohomology, consider the example of the
half-open interval X = [0, 1) decomposed as x = {0} and a = (0, 1). Now consider the
constant sheaf kX. To compute compactly supported cohomology, we must first pick a
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local orientation of our space. By choosing the orientation that points to the right, we
get that [x : a] = -1. The cohomology of our sheaf is computed via the complex

k
-1 // k ,

which yields H0
c = H1

c = 0. If we follow the prescription for computing ordinary cel-
lular sheaf cohomology, then we must remove the vector space sitting over a in our
computation. The resulting complex is simply the vector space k placed in degree 0, so
H0(X;kX) = k and is zero in higher degrees.

x!
a! b!

figure 20: Minimal Cell Structure on an Open Interval

Example 6.2.5 (Open Interval). If we pretended for a moment that the pure stratum
Y = (0, 1) is a cell complex2 with no other cells, then computing the compactly supported
cohomology of the constant sheaf would yield a vector space in degree one and nowhere
else, hence H1

c(Y;kY) = k.
To make this example a legitimate example, as in Figure 20, we place a vertex at

x = 1/2. We call our new cells a = (0, 1/2) and b = (1/2, 1). If we orient our 1-cells to
point to the right, then [x : a] = 1 and [x : b] = -1. Using the lexicographic ordering on
our cells to get a basis for C1

c(Y;kY) we can compute explicitly the compactly supported
cohomology.

�0c =

"
1

-1

#

: kx ! ka � kb ) H0
c = 0 H1

c = k

6.2.2 Cellular Cosheaf Homology

For cellular cosheaves the exact dual construction works, but the terminology is slightly
different.

2 Recall that we require a cell complex to have a one point compactification that is a regular cell complex.
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Definition 6.2.6 (Borel-Moore Cosheaf Homology). Let X be a cell complex and let bF :
Xop ! Vect be a cellular cosheaf. Define the Borel-Moore homology of HBM

• (X;bF) to be
the homology of the following complex:

CBM
• (X;bF) = · · · // �bF(faces)

[e:�]r
e,�// �bF(edges)

[v:e]r
v,e// �bF(vertices) // 0

Definition 6.2.7 (Ordinary Cosheaf Homology). Let X be a cell complex and let bF : Xop !Vect be a cellular cosheaf. By discarding all the cells without compact closure, we obtain
the maximal compact subcomplex X 0. If we write j : X 0 ,! X for the inclusion, then we
can define the ordinary chain complex to be

C•(X;bF) = CBM
• (X 0; j⇤bF).

Applying the definition above gives the ordinary cosheaf homology H•(X;bF) of a co-
sheaf.

All of the examples of cellular sheaf cohomology dualize to give interesting examples
of cellular cosheaf homology. Let us define the functor that performs this operation.

Definition 6.2.8 (Linear Duality). Let bV : Shv(X; vectk)op ! CoShv(X; vectk) be the con-
travariant equivalence from sheaves to cosheaves, both valued in finite dimensional vec-
tor spaces, defined as follows:

F(⌧) // F(⌧)⇤

⇢⇤
⌧,�
✏✏

bV(F)(⌧)
r
�,⌧
✏✏

F(�)

⇢
⌧,�

OO

// F(�)⇤ bV(F)(�)

Lemma 6.2.9. Taking linear duals preserves cohomology, i.e. Hi(X; bV(F)) ⇠= Hi(X; F) and
HBM

i (X; bV(F)) ⇠= Hi
c(X; F).

6.3 explaining homology and cohomology via indecomposables

Sheaf cohomology is notoriously difficult to interpret. Every time a successful interpre-
tation is discovered, a cornerstone of a theory waiting to be fleshed out is put into place.
For example, the Cousin problems of complex analysis asks whether a meromorphic
function with a given divisor (zeros and poles) exists or not. When Cartan and Serre
interpreted this problem in terms of sheaf theory, sheaf cohomology groups gave a com-
plete classification and obstruction theory; see [Gra79] p. 17. The narrative that falls
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out of those historical successes is that sheaf cohomology gives calculable obstructions
to finding solutions.

However, when the above interpretation fails, we need to compute examples and ex-
tract new interpretations. When computing sheaf cohomology, one encounters a plethora
of choices that obfuscate the natural meaning of the vector spaces Hi(X; F): picking or-
dered bases for each F(�), choosing local orientations, computing kernels and quotients,
taking representative elements of cohomology or homology, etc. Each of these lead one
farther from a workable interpretation of the topology of data.

The experience of the author in computing examples of sheaf cohomology has led him
to believe that the best way of circumventing these issues is to borrow an idea from the
representation theory of quivers. Specifically, if one knows the direct sum decomposition
of a sheaf into indecomposable sheaves, then one gets a distinguished basis for sheaf
cohomology. These indecomposables allow one to see how data travels through a space.

6.3.1 Persistence Modules and Barcodes

To begin the introduction of representation theory gently, we will describe a convenient
visualization technique called a barcode, which was first described by Carlsson, Zomoro-
dian, Collins and Guibas [CZCG04]. The motivation for those authors was to provide a
simple shape descriptor for data that could be used by scientists not trained in represen-
tation theory, but we will adapt it for understanding sheaves and cosheaves.

To begin, let us recast a chain complex as a special instance of the following structure:

Definition 6.3.1. A persistence module consists of a collection of vector spaces {Vi}i2Z,
one for each integer, and a collection of linear maps ⇢iV : Vi ! Vi+1. If i 6 j, then we
define ⇢Vi,j := ⇢j-1

V � · · · � ⇢iV to be the uniquely determined map from ⇢Vi,j : V
i ! Vj. We

denote a persistence module by (V , ⇢V), but we may suppress the V in ⇢V or even drop
the ⇢V all together.

Observe that one can add two persistence modules to create a third persistence mod-
ule, i.e. if (V•, ⇢V) and (W, ⇢W) are two persistence modules, then one obtains a third
persistence module (U, ⇢U) by defining Ui := Vi�Wi and ⇢iU := ⇢iV � ⇢iW . We denote the
sum by (V �W, ⇢V � ⇢W) or more simply by V �W.

There is a fundamental structure theorem for persistence modules, due to Crawley-
Boevey [CB12], that explains how any persistence module can be written as a direct sum
of simpler persistence modules. We now introduce these simpler persistence modules.

Definition 6.3.2. Recall that an interval in (Z,6) is a subset I ⇢ Z having the property
that if i,k 2 I and if there is a j 2 I such that i 6 j 6 k, then j 2 I. An interval module
kI assigns to each element i 2 I the vector space k and assigns the zero vector space to
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elements in Z \ I. All maps ⇢i,j are the zero map, unless i, j 2 I and i 6 j, in which case
⇢i,j is the identity map.

Since interval modules are completely determined by the interval where they assign
non-zero vector spaces, we can draw a bar to represent an interval module. The fol-
lowing structure theorem shows that any persistence module can be represented by a
collection of bars, called a barcode.

Theorem 6.3.3 (Decomposition for Pointwise-Finite Persistence Modules). If (V , ⇢V) is
a persistence module for which every vector space Vi is finite-dimensional, then the
module is isomorphic to a direct sum of interval modules, i.e.

V ⇠=
M

I2D
kI.

Here D is a multi-set of intervals. A multi-set is a set allowing repetitions, i.e. a set
equipped with a function µ indicating the multiplicity of each given element.

Remark 6.3.4. We will refer to the length of the bar as `(I) = j- i

This theorem summarizes a great deal of elementary linear algebra and quiver repre-
sentation theory. For linear algebra, it has the fundamental theorem of linear algebra as
a consequence [Str93], i.e. any map of vector spaces T : V !W has a matrix representa-
tion that is diagonal with 0 and 1 entries, the number of 1s corresponding to the rank of
the matrix, cf. [Art91] Chapter 4, Proposition 2.9. Said differently, there are vector space
isomorphisms making the following diagram commute:

V T //

' ⇠=
✏✏

W

 ⇠=
✏✏

im(T)� ker(T)
id�0

// im(T)� cok(T)

Here im(T), ker(T), and cok(T) refer to the image, kernel and cokernel of T respectively.
Although the image of T is properly a subspace of W, the first isomorphism theorem
identifies it with V modulo the kernel.

Example 6.3.5 (Barcodes for Linear Algebra). Consider any linear map T : R3 ! R2 as
a persistence module by extending by zero vector spaces and maps. There are three
isomorphism classes of such persistence modules determined by the rank of T . The
associated barcodes are depicted in Figure 21.
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figure 21: Barcodes associated to T : R3 ! R2 for rank(T) = 0, 1, 2

Example 6.3.6 (Barcodes for Filtrations). Barcodes with longer bars appear in filtrations
of topological spaces. For example, consider the standard height function on the torus
h : X ! R. By choosing a discrete set of points {t0 < t1, . . .} to sample the function h at,
we get a sequence of spaces {X6t

i

= h-1(-1, ti]}, which after taking homology in some
degree i > 0 defines a persistence module. Such an example is depicted in Figure 22.

X6t
0

,! X6t
1

,! · · ·  Hi(X6t
0

;k)! Hi(X6t
1

;k)! · · ·

figure 22: Barcodes for the filtration of a Torus

Now we reach an example that will be useful when we undertake the derived category
of chain complexes.

Example 6.3.7 (Barcodes for Chain Complexes). As already remarked, a chain complex
of vector spaces is a special example of a persistence module and, consequently, has a
barcode decomposition. With a moment’s reflection one can see that any chain complex
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can be written as the direct sum of two types of modules: the length zero interval
modules

Si : · · ·! 0! k! 0! · · ·

and the length one interval modules.

Pi : · · ·! 0! k! k! 0! · · ·

Figure 23 gives a visual depiction of such a barcode decomposition.

figure 23: Barcodes for a Chain Complex

6.3.2 Representation Theory of Categories and the Abelian Structure

For the purposes of this section, there is no real difference between cellular sheaves and
cosheaves — they are both representations of the cell category Cell(X). Recall, for any
category C the category of representations is defined to be the category of functors toVect: Rep(C) := Fun(C, Vect)
This category has the structure of an abelian category, which we explain in this section.
In effect, this means we can do everything in Rep(C) that we can do in Vect: take kernels
and cokernels of maps between representations, talk about images of maps, add maps
and so on. We will introduce these properties as we need them.

Claim 6.3.8. For C a category, Rep(C) is an exact category. This means we can talk about
exact sequences. Specifically:

• There is a zero representation given by sending all objects and morphisms to the
zero object and the zero morphism.
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• Between any two representations F and G there is a zero map, which can be fac-
tored through the zero representation.

• Since any morphism ⌘ : F ! G is a natural transformation occurring insideVect, there are associated kernel and cokernel representations denoted ker(⌘) and
coker(⌘) defined by taking kernels and cokernels object wise:

ker(⌘(c 0)) // F(c 0)
⌘(c 0) // G(c 0) // coker(⌘(c 0))

ker(⌘(c)) //

OO

F(c)
⌘(c) //

F(f)

OO

G(c) //

G(f)

OO

coker(⌘(c))

OO

• There is an image representation im(⌘) defined as the object-wise image.

As usual, we say that a sequence of representations A ! B ! C is exact at B if
the kernel of the outgoing morphism is equal to the image of the incoming morphism.
A longer sequence is exact if it is exact at each place with an incoming and outgoing
morphism.

We are going to do a brief sketch of some representation theory for categories, using
the terminology introduced.

Definition 6.3.9. A subrepresentation E consists of a choice of subspace E(c)! F(c) for
each object that is invariant under all the linear maps F(f). Restriction of F(f)|E(c) =: E(f)
makes E into a representation of its own right. Said more succinctly, E ! F is a natural
transformation of functors that is object wise an inclusion, i.e.

0! E! F

is an exact sequence. Dually, we can say G is a quotient representation by saying F !
G! 0 is an exact sequence.

Definition 6.3.10. Suppose F : C ! Vect and G : C ! Vect are two representations
of a small category C, then we can define the direct sum of these two representations
H = F�G by defining on objects H(c) := F(c)�G(c) and on morphisms H(f) = F(f)�
G(f) : H(c)! H(c 0).

The above definition further clarifies the structure of Rep(C).
Claim 6.3.11. For C a category, Rep(C) is both an exact and an additive category. This
latter definition requires the following:
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• For any two representations F and G the set HomRep(C)(F,G) has the structure of an
abelian group (with the zero map being the additive identity) making composition
bilinear.

• The direct sum of two representations is a representation.

A category that is exact and additive is defined to be abelian. Thus Rep(C) is an abelian
category.

Remark 6.3.12. In any additive category, it can be shown that having finite direct sums
(finite coproducts) implies the existence of finite direct products (finite products) and
these are isomorphic.

Definition 6.3.13 (Indecomposable). A representation F : C! Vect is called indecompos-
able if whenever F is written as a direct sum of representations one of the representations
is the zero one; i.e. every direct sum decomposition is trivial.

Said using sequences, a representation F is indecomposable if whenever we have a
short exact sequence of representations

0! E! F! G! 0

with neither E nor G the zero representation, then F � E�G, i.e. the sequence does not
split.

Exercise 6.3.14. Verify that the interval modules in Definition 6.3.2 are indecomposable
representations. What is the underlying category that these modules represent?

Remark 6.3.15 (Splitting Lemma). There is a general lemma called the splitting lemma,
which provides equivalent ways of saying that F is indecomposable. It states that writing
F as a direct sum is equivalent to either having a map back from F to E, which precom-
posed with the inclusion E ! F yields the identity, or having a map back from G to F,
which post-composed with the surjection is the identity on G.

Definition 6.3.16 (Remak Decomposition). A direct sum decomposition of an object F 2Rep(C)
F ⇠= F1 � · · ·� Fn

where each Fi is indecomposable and non-zero is called a Remak decomposition.

A fact that we would very much like to know is whether every representation admits
a Remak decomposition. The structure theorem 6.3.3 provides an example where this
is the case. Sir Michael Atiyah considered such a question in the very general setting
of abelian categories [Ati56]. He developed a bi-chain condition and proved that under
this condition every non-zero object admitted a Remak decomposition. We use a stronger
condition of finite-dimensionality that Atiyah showed implied his bi-chain condition.
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Theorem 6.3.17 (Krull-Schmidt Theorem for Representations [Ati56]). Suppose A is an
abelian category, further satisfying

1. For every pair of objects HomA(A,B) is a finite dimensional vector space, and

2. Conjugation is linear, i.e. for every pair of morphisms ' : A ! B and  : B 0 ! A 0

the following map is linear

HomA(B,B 0)! HomA(A,A 0) ⌘ 7!  � ⌘ �'

then the Krull-Schmidt theorem holds. This says that every non-zero object A has a
Remak decomposition and for any two such decompositions

A ⇠= A1 � · · ·�An A ⇠= A 01 � · · ·�A 0m

n = m and after re-ordering Ai
⇠= A 0i.

For A = Rep(C) the second condition is certainly satisfied. The first condition imposes
significantly stronger conditions. First of all, we must restrict to the full subcategory of
finite dimensional representations.

Repf(C) := Fun(C, vect) ⇢ Fun(C, Vect) =: Rep(C)
Secondly, one must observe that for any two representations F and G the space of natu-
ral transformations is a subspace of a potentially infinite product of finite dimensional
spaces.

Hom(F,G) ✓
Y

c2C Homvect(F(c),G(c))

One severe restriction one can make to insure that Atiyah’s first condition holds is to
assume that the category C has finitely many objects. This is not strictly necessary, but
it does provide us with the following corollary:

Corollary 6.3.18 (Sheaves and Cosheaves on Finite Posets have Remak Decompositions).
Suppose (X,6) is a finite poset, then Shv(X) and CoShv(X) satisfy the Krull-Schmidt
theorem.

The example that we have in mind, of course, is the poset associated to a a cell com-
plex X. In this situation, one can recognize a large set of examples of indecomposable
representations.

Lemma 6.3.19 (Constant (Co)Sheaves are Indecomposable). Suppose X is a connected cell
complex, then the constant sheaf kX and the constant cosheaf k̂X are indecomposable.
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Proof. We’ll state the proof for sheaves and leave it to the reader to dualize for cosheaves.
Suppose for contradiction that kX ⇠= F�G where neither F nor G is the zero sheaf. Now
as a consequence of neither F nor G being zero, and kX being one dimensional on each
cell, there must be a pair of cells � and ⌧ such that one is in the support of F and the
other is in the support of G. We argue that we can choose � and ⌧ such that one is the
face of the other. If not, then the support of F (or G) would be closed under the following
operations

� ⇢ supp(F) and ⌧ ⇢ �̄ or � ⇢ ⌧̄ then ⌧ ⇢ supp(F)

which by connectedness of X would imply that supp(F) = X; a contradiction to the
supposition that neither F nor G was the zero sheaf. (To see why supp(F) = X, one
can imagine drawing the Hasse diagram of the poset X and realizing that connectedness
means that the diagram is connected.) Thus we have such a pair � ⇢ ⌧ with one in the
support of F and the other in the support of G, but this also can not occur since the
identity cannot be written as a sum of zero maps.

k! k 6= (k! 0)� (0! k).

6.3.3 Quiver Representations and Gabriel’s Theorem

“These graphs arise in a multitude of classification problems in mathematics, such as
classification of simple Lie algebras, singularities, platonic solids, reflection groups,
etc. In fact, if we needed to make contact with an alien civilization and show them
how sophisticated our civilization is, perhaps showing them Dynkin diagrams would
be the best choice!” [EGH+

11]

There are natural examples of representations of categories where these ideas and
their consequences have been studied. One such example is the category associated to a
directed graph.

Definition 6.3.20. A quiver or directed graph is defined by a pair of sets consisting of
“edges” E and “vertices” V along with a pair of functions h, t : E ! V , which we think
of as denoting the head and tail of a directed edge respectively. Alternatively, a quiver
can be topologically regarded as a one-dimensional cell complex equipped with a local
orientation of its edges.

One should be careful to note that a directed graph is not a category in and of itself,
but there is a natural category associated to a directed graph, which we now define.
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figure 24: Simply Laced Dynkin Diagrams

Definition 6.3.21. To a quiver we can associate a category called the free category or path
category written Free(X) . The objects are vertices and the morphisms are directed paths
between vertices. Since paths are just concatenated edges, we think of the morphisms as
being freely generated by the edges. We must consider simply sitting at a vertex as the
identity directed path connecting the vertex to itself.

Definition 6.3.22. A quiver representation is thus nothing more than a functor F :Free(X) ! Vect. Because a general path is simply a sequence of edges, such a func-
tor is equivalent to specifying a vector space for each vertex in V and a linear map for
each edge in E that goes from the source to the target.

Every finite dimensional quiver representation can be decomposed into a direct sum
of indecomposable representations. However, this list can be very unwieldy. Gabriel’s
theorem provides an precise description of which quivers admit a finite list of indecom-
posable representations.

Theorem 6.3.23 (Gabriel’s Theorem [DW05]). Let Q denote a quiver. The category of
representations Rep(Q) has finitely many indecomposables if and only if the underlying
undirected graph of Q is a union of Dynkin graphs of type An, Dn, E6, E7 or E8. These
are depicted in Figure 24.
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6.3.4 A Remark on Quivers and Perverse Sheaves

From a quiver representation, one can always construct a cellular sheaf or cosheaf over
a one-dimensional base space. This is done by turning every map

F(s(e))
⇢
t,s // F(t(e))

into one of the following diagrams:

F(s(e))
⇢
t,s // F(t(e)) = F(e) F(t(e))idoo F(s(e)) F(t(e)) = F(e)idoo ⇢

t,s // F(t(e))

The former choice would make a quiver representation into a cellular sheaf, the latter
into a cellular cosheaf.

There are dangers in trying to use quiver theory as a substitute for cellular sheaf
or cosheaf theory. One might try to think of a poset as a certain type of quiver with
vertices corresponding to elements and an edge between two elements if s(e) 6 t(e).
For example, consider the poset coming from the face relation of the cell complex Y =
[0, 1)⇥ [0, 1):

�

a

??

b

__

x

__

OO

??

A quiver representation produces a diagram of vector spaces

F(�)

F(a)

<<

F(b)

bb

F(x)

bb

OO

<<

that does not commute. In contrast, if F were a cellular sheaf, then the two triangles
would commute. If we were to impose “relations” on the quiver representation by iden-
tifying different paths, then we could recover cellular sheaves.
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A relaxed version of this observation generates a combinatorial model for perverse
sheaves, which was invented by Bob MacPherson [GMV96] and explored by Maxim
Vybornov [Vyb97, Vyb98].

Definition 6.3.24. A perversity p : Z>0 ! Z is a function from the non-negative integers
to the integers such that p(0) = 0 and p takes every interval {0, . . . ,k} bijectively to an
interval {a, . . . ,a+ k} where a 2 Z60.

Definition 6.3.25 (Cellular Perverse Sheaves). Let X be a cell complex and PX its associ-
ated poset. Let p : Z>0 ! Z be a perversity. Define a quiver QX whose vertices are the
elements of PX and whose edges have the property that if ⌧! � is an edge, then � is in-
cident to ⌧ and p(dim ⌧) = p(dim�)+ 1. A cellular perverse sheaf assigns to each vertex
of QX a vector space P(v) and to each edge from ⌧ to � a linear map �,⌧ : P(⌧) ! P(�).
These maps satisfy the chain complex condition for any pair of vertices �, ⌧

X

�

�,� � �,⌧ = 0

where � ranges over all vertices containing with an edge from ⌧ and to �.
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T H E D E R I V E D P E R S P E C T I V E

“The maker of a sentence launches out into the infinite and builds a road into Chaos
and old Night, and is followed by those who hear him with something of wild, creative
delight.”

— Ralph Waldo Emerson [Eme60, p.59]

The need for a derived perspective can be stated with one picture. In Figure 25 two
maps are drawn to the two-sphere S2. One is defined on the wedge sum S2 _ S1 and
maps the S1 to a point. The other is defined on the closed disk D2 and maps the
boundary circle to a point. If one is only allowed to look at the homology of the fiber for
both of these maps, they will not be able to tell them apart. The derived category is the
universal solution to this problem, as well as many others.

In the derived category, one does not consider a sheaf in isolation, but rather one
considers complexes of sheaves or, alternatively said, sheaves of complexes. In order to
solve the problem presented by Figure 25, one works with the sheaf of cochains on each
fiber, along with their differentials. This transition is formally motivated via an analogy
with Taylor series in Section 7.1. Injective and projective sheaves are introduced as the
basic building blocks for the derived category, just as polynomials are the basis for Taylor
series. Because the Alexandrov topology is so simple, we can described explicitly the
elementary injective and projective (co)sheaves in Section 7.1.1. Injective and projective
resolutions are then introduced in Section 7.1.2.

Section 7.2 gives a high-level introduction to the homological algebra techniques nec-
essary to understanding the derived category. The explicitness of cellular sheaves allows
us to give concrete examples of what is usually taken on faith when first learning the
subject. The notion that maps are unique up to homotopy and that sheaves can be
“quasi”-isomorphic without being isomorphic, are demonstrated in Examples 7.2.3 and
7.2.8.

The derived definition of cosheaf homology is given in Section 7.3 and the derived
definition of sheaf cohomology can be dualized from there or looked up in Shepard’s
thesis [She85]. These definitions should be regarded as the true definition of cosheaf

110
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figure 25: MacPherson’s Motivating Example for the Derived Category
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homology and sheaf cohomology. The compactly supported variant, which we call Borel-
Moore cosheaf homology, is defined in Section 7.3.1. The derived functor formalism
allows us to resolve the question of invariance under subdivision in Section 7.3.2 with
considerable ease.

Finally, we exploit the special features of the Alexandrov topology to develop two new
theories: sheaf homology and cosheaf cohomology. Although these theories are invariant
under subdivision in the domain of a map, they are not invariant under subdivision
in the target of a map. These theories are sensitive to both the cell structure and the
embedding. We compute some explicit examples of these theories in Section 9.3.

7.1 taylor series for sheaves

When first learning about the derived perspective a helpful analogy might be the follow-
ing. We can approximate suitably nice functions around a point via the use of Taylor
series:

f(x) ' f(a) + f 0(a)(x- a) +
f 00(a)

2!
(x- a)2 + · · ·

The working physicist or engineer appreciates deeply how by only using a few terms,
one can make serious headway into the analysis of integrals or other problems involving
f.

In similar spirit one might start approximating or “taking the Taylor series expansion”
of a topological space X via its homotopy or homology groups:

⇡0(X, x) ⇡1(X, x) ⇡2(X, x) · · · | · · · H2(X) H1(X) H0(X)

One should realize that both of these series expansions arise from more fundamental
sequences:

X! ⌦xX! ⌦2
xX! · · · | · · ·! C2(X;k)! C1(X;k)! C0(X;k)

Here ⌦xX denotes the space of loops in X based at x (and iterated applications thereof)
and Cp(X;k) denotes the p-chains.

For a sheaf F on a topological space X one also has a similar process. Namely, there is
an exact sequence called a resolution

0! F! I0 ! I1 ! I2 ! · · ·

that when evaluated on an open set U ⇢ X produces a sequence

0! F(U)! I0(U)! I1(U)! I2(U)! · · ·
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that is exact at F(U) and I0(U).1 Like the physicist with their Taylor series, one can
discard the original sheaf and work solely with the terms in the sequence I•(U). This
sequence is a chain complex with potentially interesting cohomology. For each i, these
cohomologies piece together to provide a pre-sheaf description of the complex of sheaves
I• — the derived replacement for F.

U Hi(I•(U)) =: Hi(U; F).

If we specialize to the constant sheaf F = kX, then we obtain another familiar series
expansion of the space X: the cohomology. However, this series is much more general,
as it encodes the cohomology of each open set in X. Consequently, even if one embeds
X into the contractible cone CX, the constant sheaf and its derived replacement will
remember the topology on X.

However, just as the reason that Taylor series are amenable to analysis because polyno-
mials have simple properties, for general sheaves we must develop an algebraic analogue
of a polynomial, which are the injective sheaves.

7.1.1 Elementary Injectives and Projectives

In this section we consider the basic building blocks of the derived category, which are
injective or projective objects. These objects are characterized by universal mapping prop-
erties. For cellular sheaves and cosheaves the injectives and projectives can be described
explicitly.

Injectives

Definition 7.1.1. A representation of a small category I : C ! Vect is injective if, for
any natural transformation ⌘ : A ! I and any injection ◆ : A ,! B, there is an extension
⌘̃ : B ! I such that ⌘ = ⌘̃ � ◆. Said using diagrams, they are characterized by the usual
universal property:

0 // A ◆ //

⌘
✏✏

B

9⌘̃��
I

Exercise 7.1.2. Use the universal property of an injective representation to prove the
following statements:

1 There is no guarantee for exactness at higher terms.
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• Every short exact sequence

0! I! A! Q! 0,

where I is injective, splits, i.e. if ◆ : I ,! A is an inclusion, then A ⇠= I� cok(◆).

•
Q

Ai is injective if and only if each Ai is injective.

We will make use of these properties in Lemma 7.1.6.

For our first example of an injective representation, we consider an injective cell sheaf.
These sheaves are supported on the closures of cells.

Definition 7.1.3. An elementary injective cell sheaf on X concentrated on � 2 X with
value W 2 Vect is given by

[�]W(⌧) =

8
<

:
W if ⌧ 6 �,

0 other wise.

where the only possible non-zero restriction maps are the identity.

In order to prove that this sheaf is actually injective we introduce an alternative def-
inition of injective sheaves and cosheaves defined on arbitrary posets. This definition
makes use of the functors f⇤ and f†.

Definition 7.1.4. Let ix : ? ! X be the map that assigns to the one element poset the
value x 2 X, i.e. x = ix(?). Define the elementary injective sheaf on x 2 X with value
W 2 Vect to be [x]W = (ix)⇤W and the corresponding elementary injective cosheaf to be
{x̂}W := (ix)†Ŵ.

One can see that for cosheaves, the elementary injectives are concentrated on the open
stars of cells. To prove these objects are actually injective we make use of the adjunctions
already defined.

Lemma 7.1.5. The sheaf [x]W = (ix)⇤W and cosheaf {x̂}W := (ix)†Ŵ are injective.

Proof. The proof is immediate from the following adjunctions

HomShv(X)(A, (ix)⇤W) ⇠= HomVect(A(x),W)

HomCoShv(X)(Â, (ix)†Ŵ) ⇠= HomVect(Â(x), Ŵ)

and the fact that in the category of vector spaces every object is injective.
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There is one last lemma that tells us that the considering sheaves of the form [x]W suf-
fices for understanding all injective sheaves over a cell complex. The proof is presented
in [She85, Thm. 1.3.2, p.19-20], but we will give the direction needed for our derived
equivalence proof given in Theorem 12.2.1.

Lemma 7.1.6 (All Injectives are Sums). Let X be the face-relation poset of a cell complex.
A sheaf I is injective if and only if it is isomorphic to a one of the form ��[�]V� .

Proof. One can easily check that the direct sum of elementary injective sheaves is injective,
so this proves the ‘if’ direction.

To prove that every injective is isomorphic to a direct sum of injectives — the ‘only
if’ direction — requires a little work. Assume for induction that every injective sheaf I
that is non-zero on at most k 6 n- 1 cells is isomorphic to ��[�]V� . Now consider an
injective sheaf that is non-zero on exactly n cells. Let � be a cell of maximal dimension
where I(�) =: V 6= 0. Since I is zero on all higher cells incidence to �, there is a non-zero
map ⌘ from the skyscraper sheaf SV� to I with ⌘(�) = idV . There is also a non-zero map
◆ : SV� ! [�]V . This gives us a diagram

0 // SV�
◆ //

⌘
✏✏

[�]V

9⌘̃
}}

I

and the implicated existence of a map ⌘̃ : [�]V ! I. If ⌧ 6 �, then by the fact that ⌘̃ is a
sheaf map,

idV = ⌘̃(�) � ⇢[�]�,⌧ = ⇢I�,⌧ � ⌘̃(⌧)

the map ⌘̃ is injective. By the second property of Exercise 7.1.2, we can deduce that
I ⇠= [�]V � cok(⌘̃). Since cok(⌘̃) is zero wherever I is and also zero on �, it is non-zero
on at most n- 1 cells and the induction hypothesis applies. The zero sheaf is clearly
equal to a direct sum of elementary injectives with the zero vector space, which checks
the base case, completing the induction.

Projectives

There is a dual universal object that is called projective.
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Definition 7.1.7. A representation of a small category P is projective if for any natural
transformation ✏ : P ! A and any surjection ⇡ : B ⇣ A, there is a map ✏̃ : P ! B such
that ✏ = ⇡ � ✏̃. Said using diagrams:

P

✏
✏✏

9✏̃
��

B ⇡
// A // 0

As before, we have some dual consequences:

• Every short exact sequence

0! A! B! P ! 0

where P is projective, splits.

• �Bi is projective if and only if each Bi is projective.

Since the adjunctions will be our guide we make the following definitions.

Definition 7.1.8. Let ix : ? ! X be the map that assigns to the one element poset the
value x 2 X, i.e. x = ix(?). Define the elementary projective sheaf on x 2 X with value
W 2 Vect to be {x}W = (ix)†W and the corresponding elementary projective cosheaf to
be [x̂]W := (ix)⇤Ŵ.

We leave it to the reader to check that these objects are actually projective.

Mapping Identities

Before moving on to the derived definition of sheaf cohomology, we record some useful
identities that should be evident from the definition and the adjunctions.

HomShv([⌧]U, [�]W) =

8
<

:
HomVect(U,W) if � 6 ⌧,

0 o.w.

HomShv({⌧}U, {�}W) =

8
<

:
HomVect(U,W) if � 6 ⌧,

0 o.w.

HomCoShv([�̂]W , [⌧̂]U) =

8
<

:
HomVect(W,U) if � 6 ⌧,

0 o.w.
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HomCoShv({�̂}W , {⌧̂}U) =

8
<

:
HomVect(W,U) if � 6 ⌧,

0 o.w.

7.1.2 Injective and Projective Resolutions

As promised, we aim to prove every sheaf has a resolution by injective sheaves. This
follows from the following claim, which we now prove. Although this theorem is true
for general spaces, we work with Alexandrov spaces arising as posets as usual.

Claim 7.1.9. Every sheaf F : X! Vect on a poset (X,6) possibly of infinite size, F admits
an inclusion into an injective sheaf. Dually, every cosheaf admits is surjected onto by a
projective cosheaf.

0! F! I

Proof. We construct I explicitly. It is given by

0! F! I :=
Y

x

[x]F(x) =
Y

x

(ix)⇤F(x).

The map to I is defined easily using the standard adjunctions

◆ 2 Hom(F,
Y

x

(ix)⇤F(x)) ⇠=
Y

x

Hom(F,
Y

x

(ix)⇤F(x)) ⇠=
Y

x

Hom(F(x), F(x)) 3
Y

x

idF(x).

We encourage the reader to describe this map is explicitly, by seeing how a single idF(x)

traces through this adjunction, which we’ll call ◆x 2 Hom(F, (ix)⇤F(x)).
Similarly, for a cosheaf bF : Xop ! Vect on an Alexandrov space we could have built a

projective surjection by taking

P̂0 :=
M

x

(ix)⇤bF(x)! bF! 0

where the map ⇡0 : P0 ! bF is gotten through the corresponding adjunction for cosheaves
and using the contravariance of Hom in the first slot

Hom(
M

x

(ix)⇤bF(x),bF) ⇠=
Y

Hom((ix)⇤bF(x),bF) ⇠=
Y

Hom(bF(x),bF(x)).
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Corollary 7.1.10. Every sheaf F : X ! Vect has an injective resolution. Dually, every
cosheaf bF : Xop ! Vect has a projective resolution.

Proof. Since cokernels exist in the category of sheaves by taking element-by-element quo-
tients and by iteratively applying the claim, we obtain an injective resolution of F:

F ◆0 // I0

⇡
0 ""

◆1=j
1

⇡
0 // I1

◆2=j
2

⇡
1 //

⇡
1 ""

I2 · · ·

cok(◆0)
j
1

<<

cok(◆1)
j
2

<<

· · ·

Iterating the analogous process for projective cosheaves, replacing kernels where one
sees cokernels above, one obtains an exact sequence of cosheaves called the projective
resolution of bF:

· · · P̂2 ! P̂1 ! P̂0 ! bF! 0.

These exact sequences can be used to replace F or bF in a suitable sense, defined by the
derived category. Before moving onto that discussion, we note one interesting point.

Proposition 7.1.11. The length of injective resolution of any sheaf F 2 Shv(X) is bounded
by the length of longest chain in the poset. In particular for X a cell complex, it is
bounded by the dimension.

Proof. Pick a maximal ordered subset in X and consider its top element, say x 0, then
I0(x 0) = F(x 0) since nothing is larger than x 0. The cokernel sheaf of ◆0 evaluated on x 0 is
then cok(id : F(x 0) ! F(x 0)) = 0. So for any maximally ordered chain in X, I1 is zero on
the top-most element. Arguing inductively finishes the proof.

7.2 the derived category and homotopy theory of chain complexes

The purpose of the derived category is to replace the category of sheaves with a category
of complexes where certain operations are more natural. We have already shown that
one can replace a sheaf by its injective resolution and a cosheaf by its projective resolu-
tion. This will define our derived replacement on the level of objects, but we have not
yet shown how a map of sheaves or cosheaves induces a map on the level of resolutions.
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If � : bF! bG is a map of cosheaves, then it can be checked from the universal properties
of projective objects, that this induces a map of complexes

· · · P̂2 //

�
2

✏✏

P̂1 //

�
1

✏✏

P̂0 //

�
0

✏✏

bF

�
✏✏

// 0

· · · Q̂2
// Q̂1

// Q̂0
// bG // 0

where all the squares in sight commute. For a hint on how to see this, consider the
composite map P̂0 ! bF! bG and let bG = A and B = Q̂0 in the definition of the universal
property defining a projective object. This induces our first map P̂0 ! Q̂0. To get the
next, all important step, one must recognize that having maps from P̂0 ! Q̂0 and bF! bG
induces maps between the kernels of the map P̂0 ! bF and Q̂0 ! bG. Since Q̂1 surjects
onto the kernel of the latter map repeating the initial argument provides a map from P̂1
to Q̂1. This shows that the projective replacement of cosheaves is functorial.

Aside from functoriality, there is one more snag that needs to be mentioned: For a
sheaf or a cosheaf it is possible that the choice of injective or projective resolution is not
unique. If one really wants to use these as replacements for the original sheaf or cosheaf,
there must be a strong relationship between these two complexes. This is best seen by
specializing the functoriality discussion above to the case � = id.

· · · P̂2 //

�
2

✏✏

P̂1 //

�
1

✏✏

P̂0 //

�
0

✏✏

bF

id
✏✏

// 0

· · · Q̂2
// Q̂1

// Q̂0
// bF // 0

The resulting map of complexes need not be a term-by-term isomorphism with all
squares in sight commuting, but rather a more general notion must be substituted,
namely the definition of chain homotopy. Before giving that, let us give an example.

Example 7.2.1 (Non-Unique Projective Resolutions). Let us work again over our test
space of the closed unit interval X = [0, 1] stratified as x = 0, y = 1 and a = (0, 1). The
constant cosheaf k̂X is then modeled as

k
1

��

1

��
k k
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Revisiting the definition of the elementary projective cosheaves, there is one obvious
projective resolution because the constant cosheaf on this stratification of the unit interval
is already projective, so we have the identity map

P̂• : [â]! k̂X.

On the other hand, following blindly the prescription provided for computing the pro-
jective resolution of an arbitrary cellular cosheaf would have lead us to the following
“canonical” resolution:

Q̂• : [x̂]� [ŷ]! [â]� [x̂]� [ŷ]! k̂X

Definition 7.2.2 (Chain Homotopy). Suppose (A•,dA) and (B•,dB) are two (cohomolog-
ical) chain complexes and �• and  • are two chain maps, then a chain homotopy h• is
a chain map hi : Ai ! Bi-1

· · · // Ai-2

✏✏

// Ai-1

{{

//

 i-1�i-1

✏✏

Ai

||

//

 i�i

✏✏

Ai+1

||
 i+1�i+1

✏✏

// · · ·

· · · // Bi-2 // Bi-1 // Bi // Bi+1 // · · ·

such that
�i - i = hi+1di

A + di-1
B hi.

In which case we say that � ⇠  are chain homotopic.
Consider now two chain maps � : A• ! B• and  : B• ! A•, such that

� � ⇠ id and  �� ⇠ id

then one says A• and B• are chain homotopy equivalent.

Example 7.2.3 (Non-unique, but equivalent). Consider again the case of the two different
projective resolutions of the constant sheaf k̂X on the closed unit interval. On the one
hand the composite

0

✏✏

// [â]

✏✏
[x̂]� [ŷ]

✏✏

// [x̂]� [â]� [ŷ]

✏✏
0 // [â]
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is clearly the identity on P̂•, but the composite

[x̂]� [ŷ]

✏✏

// [x̂]� [â]� [ŷ]

✏✏
0

✏✏

// [â]

✏✏
[x̂]� [ŷ] // [x̂]� [â]� [ŷ]

cannot possibly be the identity because one map factors through zero. However, if we
employ a self-homotopy of Q̂• by defining a homotopy for the only possible degree to
be

h0 : [â]� [x̂]� [ŷ]! [x̂]� [ŷ]

which is zero on the a component and the identity elsewhere. One can then check that
this defines a homotopy between the identity map and the map indicated in the second
composite.

The conclusion from the example should be that although one can use different pro-
jective resolutions, the choice is irrelevant up to homotopy. The derived category should
not be able to discriminate between them. As such, we make the following definitions.

Definition 7.2.4. Let A be an abelian category, such as the category of sheaves or
cosheaves. The category of chain complexes in A, written Cb(A) has objects that are
chain complexes and morphisms that are chain maps.

The homotopy category of complexes Kb(A) of an abelian category A has the same
objects as Cb(A), but where we have identified chain homotopic maps.

Definition 7.2.5. For A = Shv(X) we define the bounded derived category of sheaves
Db(Shv(X)) to be Kb(Inj - Shv(X)) the homotopy category that uses only complexes of
injective sheaves.

Similarly, for A = CoShv(X), we define the bounded derived category of cosheaves
Db(CoShv(X)) by Kb(Proj-CoShv(X)) where complexes of projective cosheaves are used
instead.

This definition, is an equivalent reformulation of another definition of the derived cat-
egory. This other perspective is built on the foundational notion of a quasi-isomorphism,
which is in turn built on the idea of a cohomology sheaf or homology cosheaf.

Definition 7.2.6. Suppose we are given a complex of cellular sheaves

(F•,d•) : · · ·! Fi-1 ! Fi ! Fi+1 ! · · · ,
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i.e. for each cell � we have a complex of vector spaces. For each i we can define the ith
cohomology sheaf as the assignment

Hi(F•) : � Hi(F•(�))

which is a cellular sheaf. The restriction maps being defined as the induced map on
cohomology for the chain map F•(�)! F•(⌧) for � 6 ⌧.

Considering all i at once defines a functor from the category of complexes of sheaves
and the category of graded sheaves (sheaves of graded vector spaces with level preserv-
ing restriction maps)

H⇤ : Cb(Shv(X))! Shv(X; grVect) F•  
M

i

Hi(F•).

There are completely dual notions of homology cosheaves, where we generally use
homological indexing and notation (bF•,@•).

Definition 7.2.7 (Quasi-Isomorphisms). A map of complexes of sheaves (or cosheaves)
↵• : F• ! G• such that the induced map

H(↵•) : Hi(F•)! Hi(G•)

is an isomorphisms for every i, is called a quasi-isomorphism.

The term “quasi-isomorphism” reflects the fact that if ↵• : F• ! G• is a quasi-
isomorphism, then there does not always exist an inverse map �• that gives the identity,
or even chain homotopic to the identity, any map back may simply not exist.

Example 7.2.8. Consider again the unit interval X = [0, 1] decomposed into two vertices
x and y and an open interval a. Consider the stalk sheaf Sa that assigns k to a and is
zero everywhere else. It’s injective resolution defines a chain map

0 //

✏✏

Sa //

✏✏

0

✏✏
0 // [a] // [x]� [y]

which is a quasi-isomorphism. However, there does not exist a map of sheaves [a]! Sa.

The slogan most commonly associated with the derived category is that one “formally
inverts the quasi-isomorphisms.” This is formalized by the process of localizing cat-
egories. Namely, if Q is a collection of morphisms in B that is closed under certain
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operations, then we can consider the following universal problem: suppose L : B ! C
is a functor such that if ↵ 2 Q, then L(↵) is an isomorphism, then every such functor
factors through the category localized at Q, written B[Q-1].

B L //

##

C
B[Q-1]

9

;;

An alternative approach to the derived category of an abelian category A is to define

D(A) := K(A)[Q-1] Q = {quasi - isomorphisms}

where we have removed the boundedness hypothesis.
One then proves the following claim to re-obtain the definition we provided here

Theorem 7.2.9 ([Alu09] Thm 6.7). Suppose A is an abelian category with enough projec-
tives, then D-(A) ⇠= K-(P) where P denotes projective objects of A. Similarly, if A has
enough injectives then D+(A) ⇠= K+(I) where I denotes injective objects of A.

7.3 the derived definition of cosheaf homology and sheaf cohomol-
ogy

We are now in a position to give the derived definition of cosheaf homology and show
that it agrees with the computational formula provided earlier. This discussion can be
dualized and readily found in the literature. The proof that the formula for sheaves
computes the cohomology as defined by taking an injective resolution and applying
�(X;-) = p⇤ can be found in [She85] pp. 28-29. Let’s more or less repeat the proof for
cellular cosheaves since it is nowhere in the literature.

Definition 7.3.1. Given a cosheaf bF on X we define the left derived pushforward along
f : X! Y by taking a projective resolution and applying pushforward term by term:

Lf⇤bF := f⇤P•.

We define the ith derived functor by

Lif⇤bF := Hi(f⇤P•).
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In the special case where f = p : X! ? we write

Hi(X;bF) := Lip⇤bF

for the ith cosheaf homology group of bF.

We now aim to prove the following theorem.

Theorem 7.3.2. Let p : X ! ? be the constant map and F̂ a cellular cosheaf on X. Then
the left derived functors of p⇤ agree with the computational formula for homology, i.e.
Lip⇤F̂ = Hi(X; F̂).

Proof. Begin with a projective resolution of P̂• ! F̂ and then take cellular chains of each
cosheaf to obtain the following double complex:

...
...

...

· · · C1(X; P̂1) //

✏✏

C1(X; P̂0) //

✏✏

C1(X; F̂) //

✏✏

0

· · · C0(X; P̂1) //

✏✏

C0(X; P̂0) //

✏✏

C0(X; F̂) //

✏✏

0

· · · colimP̂1 //

✏✏

colimP̂0 //

✏✏

colimF̂ //

✏✏

0

0 0 0

Now we make use of the following two observations, which dualize [She85, Thm.
1.3.10, 1.4.1].

Lemma 7.3.3. For P̂ a projective cosheaf

Hp(C
BM
• (X; P̂)) ⇠= Hp(C•(X; P̂)) ⇠= 0

for p > 0.

Proof. Observe that we can assume that P̂ is an elementary projective co-sheaf with value
R, i.e. [�̂], since CBM

• (X;�Ai) = �CBM
• (X;Ai).

Everything follows from the following consequence of our definition of a cell complex:
In the one-point compactification of X, the closure of any cell � 2 X, call it | ¯̄�|, has the
homeomorphism type of a closed k-simplex.
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C•(X; [�̂]) is the chain complex that computes the cellular homology of Y = |{⌧ 6
�|⌧̄ is compact}|, which is a closed k-simplex minus the star of a vertex. On the other
hand, CBM

• (X; [�̂]) is equal to the chain complex calculating the cellular homology of | ¯̄�|
except in degree zero if |�̄| is not compact. Notice that H1 for both of these complexes is
the same, as |�̄| and | ¯̄�| are simply connected. This proves the claim.

Lemma 7.3.4. For any cellular cosheaf F̂ on a cell complex X we have that

colimF̂ ⇠= cok(C1(X; F̂)! C0(X; F̂)).

Proof. First let us prove that taking the coproduct of F̂ over all the cells obtains a vector
space that surjects onto the colimit. As part of the definition of colimF̂ is a choice of maps
 � : F̂(�) ! colimF̂. Let  = � � : �F̂(�) ! colimF̂, now consider the factorization of
this map through the image:

�F̂(�)  //

##

colimF̂

im 

j
::

Now we can use the im to define a new co-cone over the diagram F̂ simply by pre-
composing the factorized map with the inclusions i� : F̂(�)! �F̂(�). Since the colimit is
the initial object in the category of co-cones, there must be a map u : colimF̂! im and
thus u � j = id since there is only one map colimF̂! colimF̂.

Now observe that C0(X; F̂) = �F̂(vi) surjects onto the colimit of F̂ by virtue of the fact
that since every cell � 2 X has at least one vertex as a face, the map  factors through
�F̂(vi). Thus there is a surjection from  0 : C0(X; F̂) ! colimF̂. Notice that by universal
properties of the cokernel of @0 : C1(X; F̂) ! C0(X; F̂) it suffices to check that  0 � @0 = 0.
However, this is clear since every e edge has two vertices v1 and v2 (we’ve discarded
all those edges without compact closures), then we need only check the claim for each
diagram of the form

F̂(e)
r
e,v

1

||

r
e,v

2

""

F̂(v1) F̂(v2)

where it is clear that the colimit can be written as F̂(v1)� F̂(v2) modulo the equivalence
relation (re,v

1

(w), 0) ' (0, re,v
2

(w)), i.e. @0|e(w) = (-re,v
1

(w), re,v
2

(w)) ' (0, 0).
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From these two theorems we can conclude that the columns away from the chain
complex of F̂ are exact and thus Tot•(Ci(X; P̂j)) induces quasi-isomorphisms between
colimP̂• and C•(X; F̂). We have thus established the theorem.

7.3.1 Borel-Moore Cosheaf Homology

Definition 7.3.5. Suppose bF is a cellular cosheaf. Define �BM(X; F) to be the colimit of the
diagram extended over the one-point compactification of X where we define bF(1) = 0.
Alternatively said we look at the inclusion j : X! X[ {1} and define

�BM(X;bF) := p⇤j†bF.

Another possible definition is to dualize a cellular cosheaf of finite-dimensional vector
spaces to a cellular sheaf by post-composing bF : X ! Vect with Homvect(-,k), apply p!
and then dualize back.

Remark 7.3.6 (Functoriality). The definitions that involve the one-point compactification
are deficient in the following way. A map of cell complexes f : X! Y does not necessarily
extend to a map between the one-point compactifications. It is for this reason that for
functoriality, the definition using p! is preferred.

Now we can prove that the formula provided calculates the Borel-Moore homology of
a cosheaf F̂ by establishing the following lemma:

Lemma 7.3.7. For any cellular cosheaf F̂ on a cell complex X we have that �BM(X; F̂) ⇠=
cok(CBM

1 (X; F̂)! CBM
0 (X; F̂)).

Proof. The proof above goes through until the last argument. Now we have edges e with
only one vertex. However, by extending and zeroing out at infinity to get that the colimit
of

F̂(e)
r
e,v

}}

0

$$

F̂(v) F̂(1) = 0

is exactly equal to the co-equalizer of re,v : F̂(e) ! F(v) and the zero morphism, i.e. the
cokernel.

7.3.2 Invariance under Subdivision

Now we take up the question of invariance under subdivision by applying the derived
perspective. For convenience, we work with sheaves, but the reasoning can be dualized.
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Definition 7.3.8. Suppose F is a sheaf on X and s : X 0 ! X is a subdivision of X, then we
define the subdivided sheaf F 0 := s⇤F.

For an example, let X be the unit interval [0, 1] stratified in the obvious way with
x = 0, y = 1 and a = (0, 1). Now consider a sheaf F on X. We will want to investigate
what happens to this sheaf as we subdivide the space. In this example, the barycentric
subdivision of X produces a space X 0 with a third vertex ā and two edges ax and ay. The
obvious way of defining a subdivided sheaf is to define F 0(ā) = F 0(ax) = F 0(ay) = F(a)
where we use the identity map for the two new restriction maps. Observe that if F is the
elementary injective sheaf [a], then F 0 is not an injective sheaf, yet nevertheless F 0 and F
have isomorphic cohomology.

More generally we are concerned with the following diagram of spaces (posets)

X 0 s //

p
X

0   

X

p
X��

?

and the induced functors on sheaves. For example, if we analyze the ordinary pushfor-
ward functor, then we would obtain the following result, which is a simplified proof of
one found in [She85, Thm. 1.5.2]:

Theorem 7.3.9. Suppose F is a sheaf on X and X 0 is a subdivision of X, then

H•(X; F) ⇠= H•(X 0; F 0)

Proof. Observe that since pX 0 = pX � s, then (pX 0)⇤ = (pX)⇤ � s⇤. Now recall

(pX 0)⇤F
0 = (pX 0)⇤s

⇤F = (pX)⇤ � s⇤s⇤F.

The question then boils down to understanding the relationship between s⇤s⇤F and F.
Unraveling the definition reveals

s⇤s
⇤F(y) = lim �{s

⇤F(x)|s(x) > y}

= lim �{F(s(x))|s(x) > y}

(surjectivity) = lim �{F(x)|x > y}

(sheaf - axiom) = F(Uy)

= F(y)
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So we have that for the subdivision map s⇤s⇤F ⇠= F and as a consequence

(pX 0)F 0 ⇠= pXF.

Now we can just take the associated right derived functors to obtain the result.

7.4 sheaf homology and cosheaf cohomology

There is a surprising symmetry in the land of cellular sheaves and cosheaves, which is
unique to the land of Alexandrov spaces and deserves to be explored. Contrary to the ex-
istence of enough injective sheaves, which for general sheaves is gotten as a consequence
of the target category, e.g. Ab, Vect, etc., the existence of enough projective sheaves is
driven by the underlying topology of the space.

Proposition 7.4.1. Suppose X is a topological space with the property that there is a
point x 2 X such that for every open neighborhood U 3 x there is a strictly smaller
open neighborhood V ⇢ U. Then the category of sheaves on X does not have enough
projectives.2

Proof. Consider the map i : x ,! X and the sheaf i⇤k. Suppose it has a projective reso-
lution, i.e. a projective sheaf P and a surjection P ! i⇤k. Now let’s examine this map
evaluated on an open set U 3 x. By assumption there is another open set V ⇢ U and
we can put the constant sheaf extended by zero on V , denote the inclusion by j : V ,! X.
Note that we have the following diagram of sheaves

j!k̃V // i⇤k // 0

P

bb OO

whose value on the open set U is

j!k̃V(U) = 0 // i⇤k(U) = k // 0

P(U)

gg OO

so in particular the surjection must factor through zero — a contradiction.

2 The author would like to acknowledge the contributions of Valery Alexeev, David Treumann, and Jon
Woolf on mathoverflow in regards to this question.
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Contrary to sheaves on manifolds and other Hausdorff spaces, cellular sheaves are can
be viewed as sheaves on finite posets and as such do not suffer from the above argument.
In fact, computing a projective resolution is as easy as computing injective resolutions.
To see how this goes recall we need to find a projective sheaf that surjects onto our sheaf
of interest.

P0 := ��2X{�}F(�) ! F! 0

serves nicely and by finding the kernel sheaf (which is easier to understand than coker-
nels!) and then iterating this process will obtain a projective resolution

· · ·P-3 ! P-2 ! P-1 ! P0 ! F! 0.

This motivates the following definitions:

Definition 7.4.2. Given a cellular sheaf, we can construct its projective resolution P• ! F,
calculate colimits of P• and take the cohomology of the resulting complex of vector
spaces. Assuming F was in degree zero, this will be concentrated in negative degree and
we define the homology of a cellular sheaf F to be Hi(X; F) := H-i(p†P•).

Similarly we define the cohomology of a cellular cosheaf F̂ by taking its injective
resolution Î•, and taking limits, i.e. Hi(X; F̂) = Hi(p̂⇤Î•).

The reasons for it’s apocryphal nature are many:

1. Only for (co)sheaves over finite spaces are there enough projectives and enough
injectives.

2. Spaces for which there is not a fixed n so that every cell � contains in its star a
cell ⌧ such that dim ⌧ = n cannot hope to have the same computational formula
for (co)homology because we can’t treat the colimit (in the case of a sheaf) as a
quotient object of �dim ⌧=nF(⌧) and dually for limits of cosheaves.

3. This defect, which is measured by the difference of Hn(X; F) and colimF, is only the
first in a series of obstructions that appear to detect whether X is a cell structure
on a manifold.

The evidence for the last two observations is further solidified in view of the following
theorem.

Theorem 7.4.3. Suppose F is a cellular sheaf on a triangulated closed n-manifold X, then
F defines a cellular cosheaf on the dual triangulation and moreover all the homologies
and cohomologies of both agree.
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Proof. This is a consequence of the following simple observation:

F(�i)
⇢
�,⌧ //

✏✏

F(⌧i+1)

✏✏
bF(�̃n-i)

⇢
�̃,⌧̃ // bF(⌧̃n-i-1)

So the same abstract diagram of vector spaces F : X ! Vect defines a diagram over
bF : X̃op ! Vect, i.e. a cosheaf on the dual cell structure. Since they are the same diagrams
everything about them is the same.

7.4.1 Invariance under Subdivision

One can ask whether this new invariant is invariant under subdivision. In this section we
show that it is invariant for the domain of a map, but is not invariant under subdivision
of the target. One can see this latter claim by an earlier example already considered with
the pushforward with open supports to a circle.

Theorem 7.4.4. Suppose F is a sheaf on X and X 0 is a subdivision of X, then

(pX 0)†F
0 ⇠= (pX)†F

and consequently
(LpX 0)†F

0 ⇠= (LpX)†F

thus sheaf homology is invariant under subdivision. Similarly, the same result should
hold for cosheaf cohomology.

Proof. Getting right down to it we see

s†s
⇤F(y) = colim{s⇤F(x)|s(x) 6 y}

= colim{F(s(x))|s(x) 6 y}

(surjectivity) = colim{F(x)|x 6 y}

(check - directly) = F(y)

and thus
(pX 0)†s

⇤F = (pX)†s†s
⇤F ⇠= (pX)†F.

Taking the left derived functors gives the higher result.



Part III

A P P L I C AT I O N S T O S C I E N C E A N D E N G I N E E R I N G

This part constitutes a first application of cellular sheaves and cosheaves to
problems in science and engineering.

Chapter 8 begins with a short introduction to persistent homology, which
we reformulate using sheaves and cosheaves. The advantage of this refor-
mulation is the ability to distribute homology computations and aggregate
efficiently, as noted in Section 8.2.2, which is part of joint work [CGN13]
where discrete Morse theory is adapted to compute cellular sheaf cohomol-
ogy. A theorem that uses the apparatus of spectral sequences to connect level
set and sub-level set persistence is proved in Section 8.2.3. A motivating ex-
ample for multi-dimensional persistence and an introduction of “generalized
barcodes” concludes the chapter.

Chapter 9 reviews an application of sheaves to network coding introduced
first in [GH11]. However, here the language of cellular sheaves is employed
and the barcode method is used to visualize the flow of data. A duality
theorem for network coding sheaves is proved in two different ways.

Chapter 10 casts various sensor network problems in the language of sheaves.
Any attempt to use level set persistence to study the intruder problem is
proven to be a “no-go” using the machinery of cosheaves. The main contribu-
tion of the chapter is the introduction of a linearized model for multi-modal
sensing in Section 10.4. It was this model that first motivated the author to
take up the theory of indecomposables as a way of interpreting sheaf coho-
mology.
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8
T O P O L O G I C A L D ATA A N A LY S I S

“We are enabled to divide into forms, following the objective articulation; we are not
to hack off parts like a clumsy butcher.”

— Plato’s Phaedrus 265e, translated by R. Hackforth

Suppose two patients enter an office with a recent diagnosis of cancer. If they are very
lucky, they might have their respective tumors biopsied and sent off for genetic analysis.
The genetic analysis consists of measuring the gene expression levels of over a thousand
genes in each of the respective tumors. These two sets of expression levels are then
compared with a few hundred other tumor samples, where varying therapies were used
to varying degrees of success. How should the doctor determine which course of action
to take? If we are to carve the universe at its joints, on which side do these patients lie?

A similar, but apparently less dramatic, situation occurs in topology. Given two topo-
logical spaces X and Y, how do we discern whether X and Y are essentially the same
or different? The entire apparatus of algebraic topology was developed to address this
problem. It turns out that these two situations are not just formally similar. Topologi-
cal data analysis stems from the observation that data of the above form can give rise
to topological spaces, which can in turn be discriminated using classical constructions
such as homology [LSL+

13].

8.1 point clouds and persistent homology

To illustrate why the applicability of homological methods is not so far-fetched, consider
the following toy problem, which serves as the standard entrée into persistent homology.
Consider a finite set of points {xi} ⇢ Rn. How do we describe the perceived shape of
such a set of points, such as the set depicted in Figure 26? The human brain is a pattern-
making machine that connects the dots and returns the knee-jerk response that the points
in Figure 26 appears to form a circle. However, what do we mean by this and how can
we automate this process so as to remove human subjectivity?

Mathematics abounds with rigorous formulations of what does or does not look like
a circle. However, only topology provides a definition that is robust with respect to
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figure 26: Point Cloud Data

perturbation and noise. One universal definition of a circle is given by the Eilenberg-Mac
Lane space K(Z, 1), which is homotopy equivalent to S1. However, homology provides a
shape descriptor based on linear algebra, which can be efficiently computed. But there is
still the problem that the homology of the set of points in Figure 26 is not isomorphic to
the homology of the circle. To get around this, we consider the union of Euclidean balls
of some radius r [B(xi, r) =: Xr, which mirrors the “connecting the dots” procedure that
the brain applies. Then one observes that there are natural inclusions

Xr
0

,! Xr
1

,! Xr
2

,! Xr
3

· · ·

whenever r0 6 r1 6 r2 6 · · · and so on. Applying the ith homology functor Hi(-;k)
turns this diagram of spaces into a diagram of vector spaces, which defines a persistence
module, cf. Definition 6.3.1.

Hi(Xr
0

;k)! Hi(Xr
1

;k)! Hi(Xr
2

;k)! Hi(Xr
3

;k)! · · ·
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By applying the structure theorem 6.3.3, we can determine the barcodes of the collection
of points. Long bars are considered to be robust topological signals in the data set. For
Figure 26, there would be one long bar in the persistence module corresponding to H0,
indicating that after a certain radius the the space Xr is connected, and another long bar
in the module corresponding to H1, indicating the apparent circle in the data set.

To summarize, we have the following prototypical pipeline of topological data analy-
sis.

Definition 8.1.1 (Point Cloud Persistence). The point cloud persistence pipeline consists
of the following ingredients and operations:

1. Let X denote a point cloud, i.e. the union of a finite set of points {xi} ⇢ Rn.

2. The union of balls Xr := [x
i

2XB(x, r) (or the Vietoris-Rips complex [Ghr08]) defines
a functor from the real line, viewed as poset, to the category of topological spaces
(simplicial complexes) and maps, i.e.

G : (R,6)! Top r Xr r 6 r 0  Xr ,! Xr 0

3. Postcomposing this functor with homology H⇤, defines a graded representation of
the real line, which is equivalently a graded sheaf on the Alexandrov topology or
a graded persistence module:

H⇤(Xr
0

;k)! H⇤(Xr
1

;k)! H⇤(Xr
2

;k)! H⇤(Xr
3

;k)! · · ·

4. Applying Theorem 6.3.3 produces a Remak decomposition of this representation
into a multiset of interval modules, which is visualized as a barcode by the end
user.

The first and second steps in this pipeline offer the chance for endless modification
and application. Instead of considering a collection of points, one can start with a space
X and a function f : X! R and consider the family of sub-level sets Xr := f-1(-1, r]. As
long as the function and space are sufficiently nice, we can use Theorem 6.3.3 to produce
a barcode.

Exercise 8.1.2. Determine the barcodes associated to the function f(x) = x3 - x.

Exercise 8.1.3. Recast the basic theorems of Morse theory in terms of barcodes. See
Figure 22 for inspiration.
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8.1.1 Level Set and Zigzag Persistence

Despite their successes, persistence modules are not the end-all, be-all of topological
data analysis. In [CdS10] Gunnar Carlsson and Vin de Silva gave three examples where
diagrams of vector spaces and maps of the form

V1 $ V2 $ V3 $ · · ·$ Vn-2 $ Vn-1 $ Vn

are of interest. One example comes from estimating the probability density function
from which a point-cloud is drawn. One can try to smooth the data by defining a
function ⇢r(x) that counts the number of points within a radius r of the point x. If
one then tries to take the 25% densest points measured according to a sequence of radii
r1 < r2 < · · · < rn, the the only way of comparing features comes from a zigzag diagram
of the form

Xp
r
1

! Xp
r
1

[Xp
r
2

 Xp
r
2

! · · · Xp
r
n

where Xp
r
k

indicates the p% densest points measured according to the function ⇢r
k

(x).
Similarly, if one has a function f : X! R, but not the computational power to investigate
the entire sub-level set f-1(-1, r], one could choose a mesh t0 < t1 < t2 < · · · < tn and
consider the zigzag of pre-images given by

f-1(t0)! f-1[t0, t1] f-1(t1)! · · · f-1(tn).

Applying homology in some degree i gives the traditional definition of level set persis-
tent homology. This complicates the usual TDA pipeline because, a priori, the structure
theorem 6.3.3 fails to apply. Fortunately, Gabriel’s Theorem 6.3.23 tells us that the di-
rection of the arrows doesn’t matter for the representations of An type quivers, so the
decomposition into interval modules still applies; we still have barcodes [CdS10].

The fully general definition of level set persistence usually given adheres to this per-
spective that the assignment of homology to closed intervals is fundamental.

Definition 8.1.4. The interval category of R, written Int(R), is the category whose objects
are closed intervals [x,y] ⇢ R and whose morphisms are inclusions [x,y] ,! [x 0,y 0].

Definition 8.1.5 (Level Set Persistent Homology). Suppose f : X ! R is a function, not
necessarily continuous. The ith level set persistence of f Li is the representation of the
interval category given by

Li : Int(R)! Vect [x,y] Hi(f
-1([x,y]);k).
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figure 27: Height Function on the Circle

Critique of the Definition of Level Set Persistence

The definition of level set persistence suffers in one crucial respect. The definition is
non-local and consequently requires the storage of an infinite amount of data. Consider
the map f depicted in Figure 27. Level set persistence for H1 will assign the zero vector
space to every interval of diameter less than y- x. Only after inspecting intervals large
enough will the topological feature of the circle appear.

A sheaf-theoretic approach to level-set persistence offers the advantage of being local.
However, the analogous sheaf version of the level set H1 just examined is the zero sheaf.
The trade-off appears to be too great. However, the apparent disadvantage is remedied
via the use of sheaf-cohomology, which preserves all the information of the domain
space while simultaneously being local.

8.2 approaching persistence with sheaves and cosheaves

8.2.1 Cellular Maps and Absolute Homology Cosheaves

The contravariant nature of sheaves should remind us that that they are most naturally
associated with cohomology of a space. Cosheaves, being covariant with respect to the
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h-1(x,y)!h-1[x,y)! h-1(x,y]!

H0(-;k)! k2!k! k!

figure 28: Homology Cosheaf for a circle, with barcodes

inclusion of opens, are naturally associated with homology of a space. Since we are
working over a field, we can pass back and forth between these perspectives. However,
to coincide with the traditional use of homology in persistence, we first introduce our
version of persistence using cosheaves.

Definition 8.2.1. Suppose X and Y are cell complexes and f : Y ! X is a proper cellular
map, see Definition 5.1.12 for a reminder, then for each natural number i > 0 we have
the following ith absolute homology cosheaf bFi, which assigns to a cell � in X the ith
homology of the pre-image f-1(star(�)), i.e.

bFi(�) := Hi(f
-1(star(�));k).

This is clearly a cellular cosheaf since if � 6 ⌧, then star(⌧) ✓ star(�) and thus we have a
map

r�,⌧ : Hi(f
-1(star(⌧));k)! Hi(f

-1(star(�));k).
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By Corollary 6.3.18 we know that every absolute homology cosheaf can be decom-
posed into indecomposable sheaves. For cellular maps f : Y ! X where X is a compact
subset of R, the absolute homology cosheaves have the following form:

Hi(f
-1(star(x0));k) Hi(f

-1((x0, x1));k)! Hi(f
-1(star(x1));k) · · ·

Hence, by Gabriel’s Theorem 6.3.23 absolute homology cosheaves over X ⇢ R can be as-
signed barcodes. However, by inspecting the support of these indecomposable cosheaves
we observe that there are four types of bars that make up any barcode:

[—] (—) [—) (—]

Example 8.2.2. Let h : S1 ! R be the standard height function on the circle, drawn in
Figure 27. The only absolute homology cosheaf of interest is bF0, since the fibers have
no higher homology. The associated pre-images, values of the homology cosheaf and
barcode are drawn in Figure 28.

Remark 8.2.3 (Barcode Notation). We will use intervals to represent barcodes and these
will be sensitive to whether the first or last vector space in an indecomposable represen-
tation falls on a vertex or an open interval in some stratification of [0, 1] or R. For visual
clarity, we will adopt the convention that a turned around square bracket is equivalent
to a round one, i.e. (xi, xi+1) ]xi, xi+1[ and [xi, xi+1) [xi, xi+1[ and so on.

By viewing these barcodes as cosheaves, which have a homology theory, we can com-
pute barcode homology.

Lemma 8.2.4. Suppose X is a compact subset of R, equipped with some cell structure.
The cosheaf homology of the four types of indecomposable cosheaves coincides with the
Borel-Moore homology of the underlying barcode, i.e.

HBM
0 ([—]) = k HBM

1 (]—[) = k HBM
i ([—[) = HBM

i (]—]) = 0

with all other Borel-Moore homology groups being zero. Moreover, since cosheaf ho-
mology commutes with finite direct sums, cellular cosheaf homology of bF on X can be
computed using the barcode BbF associated to the Remak decomposition of bF.

Hi(X;bF) ⇠= �HBM
i (BbF) i = 0, 1

In short,

H0(X;bF) counts closed bars and H1(X;bF) counts open bars.
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Proof. The proof of the claim uses simple computations, illustrated in the examples, and
an invariance under subdivision argument, which is proved in Theorem 7.3.9. The true
sticking point is why ordinary cosheaf homology becomes Borel-Moore (cosheaf) homol-
ogy, which is developed in section 7.3.1.

If we imagine that we are extending the constant cosheaf supported on a barcode to
a cosheaf defined on all of [0, 1], then the natural way of extending by zero is to use the
pushforward with open supports functor j†, where

j : B ,! [0, 1] and k̂B 7! j†k̂B.

The process of taking cosheaf homology is to then push forward this cosheaf to a point.
However, using Lemma 7.3.7 we see the following is true:

p!k̂B ⇠= p⇤j†k̂B HBM
i (B; k̂B) ⇠= Hi([0, 1]; j†k̂B)

When it is clear that we are working on [0, 1] we may write k̂B instead of j†k̂B.

One of the advantages of absolute homology cosheaves is that over the real line they
can be used to compute the homology of the domain.

Corollary 8.2.5 (“The Barcode Trick”). Assume Y is compact and f : Y ! X is a cellular
map with f(Y) = X ⇢ R. For each i, let Bi denote the barcode associated to the ith
absolute homology cosheaf. The following is true:

Hi(Y;k) ⇠= H0(X;bFi)�H1(X;bFi-1) ⇠= HBM
0 (Bi)�HBM

1 (Bi-1)

Proof. This is an immediate corollary of Theorem 8.2.15 and Lemma 8.2.4.

Let h : S2 ! R be the standard height function on the two sphere. In Figure 29 we have
drawn the map and the associated barcodes. The barcode decomposition for the cosheaf
associated to taking H0 of the fiber is trivial because it is already an indecomposable
cosheaf.

bF0 : k koo // k

Similarly, taking H1 of the fiber also yields an indecomposable cosheaf

bF1 : 0 koo // 0

Now let us compute cosheaf homology. Since the space X = [0, 1] is compact, ordi-
nary and compactly supported cosheaf homology agree. We label our cells as x = 0,
a = (0, 1) and y = 1. To get an ordered basis and matrix representatives for our ho-
mology computation, we choose the local orientation pointing to the right and use the
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Example 8.2.6 (Height function on the Two Sphere).

B0!
B1!

figure 29: Barcodes and the Two Sphere

lexicographic ordering on the cells. For bF0 we get the following boundary matrix and
homology groups:

@1 =

"
-1

1

#

: ka ! kx � ky ) H1(X;bF0) = 0 H0(X;bF0) = k.

For bF1 the computation is even easier:

@1 : ka ! 0 ) H1(X;bF1) = k H0(X;bF1) = 0
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One can then check 8.2.5 simply as follows:

H0(X;bF1) = 0 H1(X;bF1) = k

H0(X;bF0) = k H1(X;bF0) = 0

H0(S
2) = k H1(S

2) = 0 H2(S
2) = k

B0!

B1!

figure 30: Barcodes for the Cone

Example 8.2.7 (Height function on a Cone). The height function on a cone is not a Morse
function because differentiability breaks down at the cone point; see Figure 30. One
could use stratified Morse theory as a substitute, but we’ll use cosheaf homology. Here
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the cosheaf bF0 is the same as the previous example; we will not repeat the computation.
The cosheaf bF1

bF1 : 0 koo // k

exhibits different behavior. The cosheaf homology computation for this cosheaf reveals
that the half-open barcode, embedded inside a compact interval, has no non-zero homol-
ogy groups.

@1 = id : ka ! ky ) H1(X;bF1) = 0 H0(X;bF1) = 0

Checking 8.2.5 again gives

H0(X;bF1) = 0 H1(X;bF1) = 0

H0(X;bF0) = k H1(X;bF0) = 0

H0(C) = k H1(C) = 0 H2(C) = 0

Let’s illustrate the utility of the barcode trick by computing cosheaf homology over X
using two different methods:

• Using the computational formulae of section 6.2

• Determining the barcode decomposition and applying claim 8.2.4.

Example 8.2.8 (Height function on the Torus). The standard introductory example of
Morse theory, first popularized by Raoul Bott, is the height function on the torus. In
Figure 31 we have drawn the behavior of the fibers over the critical values and the non-
critical intervals. For the sake of brevity, let us write out only the cosheaf bF1:

0 kaoo // k2y k2b
oo // k2z kcoo // 0

Here the maps from ka to k2y and kc to k2z are the diagonal maps

rz,a =

"
1

1

#

= rz,c



8.2 approaching persistence with sheaves and cosheaves 143

B1!

B0!
figure 31: Barcodes for Bott’s torus

and the other maps are the identity. Choosing the orientation that points to the right, we
get the follow matrix representation for the boundary map:

@1 =

2

66664

1 -1 0 0

1 0 1 0

0 1 0 -1

0 0 1 -1

3

77775
H1(X;bF1) =<

2

66664

1

1

1

1

3

77775
> H0(X;bF1) ⇠= k

However, if we change our bases as follows
"

y 01 = y1

y 02 = y1 + y2

# "
b 01 = b1

b 02 = b1 + b2

# "
z 01 = z1

z 02 = z1 + z2

#
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then our cosheaf bF1 can then be written as the direct sum of two indecomposable
cosheaves:

0 0oo // ky 0
1

kb 0
1

oo // kz 0
1

0oo // 0

0 kaoo // ky 0
2

kb 0
2

oo // kz 0
2

kcoo // 0

Hence it is apparent that

Hi(X;bF1) ⇠= HBM
i ([—])�HBM

i (]—[).

From which the homology of the torus can be directly observed.

H0(X;bF1) = k H1(X;bF1) = k

H0(X;bF0) = k H1(X;bF0) = k

H0(T) = k H1(T) = k2 H2(T) = k

8.2.2 Local-to-Global Computations via Cellular Sheaves

Aside from the decoration of cosheaves, section 8.2.1 is completely classical and can be
stated much more generally using non-cellular sheaves and cosheaves. However, one
can still use cellular versions to compute homological information of non-cellular spaces
as already noted by the author in [CGN13].

The Čech Approach

Recall that any topological space X equipped with a cover U has an associated simplicial
approximation NU given by the nerve construction considered in Definition 2.1.2. The
nerve theorem tells us when this approximation is “good enough” for the purposes of
cohomology.

Theorem 8.2.9 (Nerve Theorem [Ler45, Bor48]). Given a topological space X and a cover
U, if the support U� ⇢ X of each � 2 NU is acyclic (i.e., the reduced cohomology
H̃•(U�;R) = 0 vanishes), then H•(NU;R) ⇠= H•(X;R).

Typically, the coarsest covers do not satisfy the acyclicity assumption. One achieves
this by refinement of the cover, with the additional cost of more simplices in NU. How-
ever, one can dodge this refinement by recording the cohomology of the intersection as
a cellular sheaf on NU.
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Definition 8.2.10 (Čech Sheaves). The Čech cellular sheaves Čn associated to the cover U
of a space X are defined on the nerve NU by the following data. Each � 2 NU is assigned
the vector space Čn(�) = Hn(U�;k) and each face relation � ⇢ ⌧ is assigned the linear
map Čn

�⌧ : H
n(U�;R)! Hn(U⌧;R) arising from the inclusion of supports U⌧ ,! U�.

If all simplex supports are acyclic, then Č0 reduces to the constant sheaf on NU and all
other Čns are trivial; in the absence of acyclicity assumptions, the following result yields
a simple correction.

Proposition 8.2.11. Let X be a topological space and U a cover whose nerve NU is at most
one-dimensional. Then, for each n 2N,

Hn(X;k) ⇠= H0(NU; Čn)�H1(NU; Čn-1).

We note that similar results have been obtained by Burghelea and Dey [BD13], as
well as Carlsson, de Silva, and Morozov [CdSM09] in the context of zig-zag persistence.
The difference between their results and ours is that their results depend on the decom-
position of zig-zag persistence modules into indecomposable modules (barcodes). Our
result makes the recognition that these modules are rightly conceived as sheaves over
a linear nerve with a cohomology that can be quickly computed using discrete Morse
theory [CGN13].

Proposition 8.2.11 generalizes the familiar Mayer-Vietoris long exact sequence, as the
next example shows.

Example 8.2.12 (Mayer-Vietoris). The Mayer-Vietoris Theorem states that given an open
cover of X by two open sets U = {A,B} we have the following exact sequence of R-
modules and maps:

0 // H0(X) // H0(A)�H0(B) // H0(A\B)
 0

// H1(X) // · · · // Hn-1(A\B)
 n-1

// Hn(X) // Hn(A)�Hn(B) // Hn(A\B)
 n

00 · · ·
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Ideally one can determine the unknown cohomology of X = A [ B by inspecting the
terms on either side. More formally, one uses universal constructions to force Hn(X) into
a more manageable short exact sequence:

Hn-1(A)�Hn-1(B)
�0
n-1 // Hn-1(A\B)

✏✏uu

0

✏✏
0 // cok(�0n-1)

✏✏

// Hn(X) //

✏✏

ker(�0n) //

vv

0

0 Hn(A)�Hn(B)
�0
n // Hn(A\B)

The dotted maps are defined by the universal property of the cokernel and kernel, re-
spectively. Over an arbitrary coefficient ring R we would have to solve an extension
problem in order to infer Hn(X). If we take R to be a field k, then every short exact
sequence splits and we can deduce that

Hn(X) ⇠= ker(�0n)� cok(�0n-1)
⇠= H0(NA,B; Čn)�H1(NA,B; Čn-1)

where NA,B is the unit interval, viewed as the nerve of a two-element cover.

The Leray Approach

As Section 8.2.1 already indicated with examples, one can compute homological infor-
mation of a space Y with a suitably nice map f : Y ! X. We view this construction from
a different perspective. By assuming that X comes with a cover V, having nerve NV, one
can pull-back the associated Čech sheaf on NV along f to yield local information about
Y.

Definition 8.2.13 (Leray Sheaves). The Leray cellular sheaves Ln associated to a map
f : Y ! X and a cover V of f(Y) ⇢ X are defined over the nerve NV as follows. Each
simplex � 2 NV is assigned the cohomology of the preimage of its support, i.e., Ln(�) =
Hn(f-1(V�);k); furthermore, each face relation � ⇢ ⌧ is assigned the map induced on
cohomology by the inclusion f-1(V⌧) ,! f-1(V�).

Remark 8.2.14. • We will sometimes use the notation Fn in place of Ln to emphasize
the association to f : Y ! X.

• The absolute homology cosheaf bFn of Definition 8.2.1 is clearly the cosheaf-theoretic
version of Ln when the cover is given by the open stars of the cells.
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• A More general version of the Leray sheaf is given by the right derived pushfor-
ward of the constant sheaf along the map f.

In the special case where X = Y and f is the identity map, the Leray sheaves clearly
coincide with the Čech sheaves associated to the cover V of X. Thus, the following result
generalizes Proposition 8.2.11.

Theorem 8.2.15. Let f : Y ! X be continuous. Assume a cover V of the image f(Y) ⇢ X
whose nerve NV is at most one-dimensional. Then, for each n 2N,

Hn(Y;k) ⇠= H0(NV;Ln)�H1(NV;Ln-1).

Proof. The theorem is a simple consequence of the Leray spectral sequence which pack-
ages the cohomology of Y into a coefficient system over the space X from a map f : Y !
X [McC01]. The restriction to a one-dimensional nerve forces the spectral sequence to col-
lapse on the second page and hence yield the desired isomorphisms. More precisely, for
each open V ⇢ f(Y), let Cn(V ;R) denote the vector space freely generated by the set of all
cochains defined on V . Clearly if V ⇢ U, then there is a surjection Cn(U;R) ! Cn(V ;R)
defined by restriction of cochains. The sheaf eCn associated to this presheaf of singular
cochains is consequently flabby (see [Ram05, p. 97]).

Consider the following double complex of vector spaces:

...
...

...
...

C2(Y) //

OO

L
dim�=0

eC2(f-1(V�)) //

OO

L
dim ⌧=1

eC2(f-1(V⌧) //

OO

0

C1(Y) //

OO

L
dim�=0

eC1(f-1(V�)) //

OO

L
dim ⌧=1

eC1(f-1(V⌧) //

OO

0

C0(Y) //

OO

L
dim�=0

eC0(f-1(V�)) //

OO

L
dim ⌧=1

eC0(f-1(V⌧)) //

OO

0

It follows from standard results [Bre97, Thm II.5.5, Thm III.4.13]) that the rows are ex-
act. By the acyclic assembly lemma [Wei94], the spectral sequence converges to the
cohomology of the leftmost column, i.e., H•(Y;k). If one takes cohomology in the ver-
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tical direction, one obtains the defined cochain groups associated to the Leray cellular
sheaves Ln:

...
...

...

L
dim�=0 H

2(f-1(V�)) //
L

dim ⌧=1 H
2(f-1(V⌧)) // 0

L
dim�=0 H

1(f-1(V�)) //
L

dim ⌧=1 H
1(f-1(V⌧)) // 0

L
dim�=0 H

0(f-1(V�)) //
L

dim ⌧=1 H
0(f-1(V⌧)) // 0

Taking cohomology horizontally corresponds precisely to computing separately (in par-
allel, if one wishes) the cohomology of the Leray sheaves Ln over NV, thus producing
the final stable page of the spectral sequence.

...
...

...

H0(NV;L2) H1(NV;L2) 0

H0(NV;L1)

44

H1(NV;L1) 0

H0(NV;L0)

44

H1(NV;L0) 0

Over a general ring R, these terms prescribe a filtration of the cohomology, giving rise to
extension problems; however, over a field k one can read off the cohomology directly.

Note that the proof indicates precisely where we require the one-dimensional nerve
restriction. Without this assumption in place, the second page of the spectral sequence
may not be stable and the conclusion of the theorem need not hold.

A Unifying Perspective

There is a more sophisticated version of the nerve described originally by Segal [Seg68]
which is homotopically faithful to the underlying space independent of the particulars



8.2 approaching persistence with sheaves and cosheaves 149

of the cover. This notion has been used in recent applications [ZC08] and parallelizations
for homology computation [LZ].

Definition 8.2.16 (Mayer Vietoris Blowup). Let X be a topological space equipped with
a cover U with nerve NU. The Mayer Vietoris blowup MU associated to U is a subset of
the product X⇥NU defined as follows. The pair (x, s) lies in MU if and only if there is
some simplex � 2 NU for which x 2 U� and s 2 �.

Remark 8.2.17. The original description given by Segal is that (up to barycentric sub-
division) MU is the classifying space of a topological category, whose objects are pairs
(x,U�) with x 2 U� and whose morphisms are pointed inclusions (x,U�) ! (y,U⌧)
where ⌧ ⇢ � ⇢ I and I is the indexing set of the cover U = {Ui}i2I.

Segal provides an updated version of the nerve theorem using this construction [Seg68,
Prop. 4.1]

Lemma 8.2.18 (Generalized Nerve Theorem). If X is a paracompact Hausdorff space and
U = {Ui}i2I is an open cover of X, then MU is homotopic to X.

Proof. An explicit proof is provided by Segal using linear homotopies. Here we take a
slightly higher-brow approach.

Being a subset of the product, MU is equipped with natural surjective projection maps

MU
⇢
1

~~

⇢
2

""
X NU

The map ⇢1 has contractible fibers: for any x 2 X, we have ⇢-1
1 (x) = {x}⇥ �x where �x is

the unique simplex of maximal dimension whose support contains x. Thus, by Quillen’s
Theorem A [Qui73], the Mayer-Vietoris blowup is homotopy-equivalent to X via ⇢1 in
full generality.

On the other hand, it is easy to see that the map ⇢2 fails to have contractible fibers
precisely when the simplex supports are not contractible. In fact, given s 2 NU, the fiber
⇢-1
2 (s) has the homotopy type of the support of �s, which is the unique simplex of maxi-

mal dimension whose realization contains s. Since cohomology is a homotopy invariant,
this leads to the following observation which unifies the Čech and Leray approaches.

Proposition 8.2.19. The Leray cellular sheaves Ln associated to the map ⇢2 : MU ! NU,
where NU is covered by (small neighborhoods of the topological) simplices {�}�2NU

, are
isomorphic to the Čech cellular sheaves Čn associated to the cover U.
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Remark 8.2.20. • The commonality between the Čech and Leray approaches comes
as no surprise to anyone sufficiently familiar with spectral sequences (and would
have surprised neither Čech nor Leray).

• Both strategies are examples of distributed cohomology computation because in
order to determine the sheaf Čn or Ln, one only needs to compute cohomology
locally: of a non-trivial intersection of covering sets in the former case, or of a
small neighborhood of the fiber f-1(x) in the latter case. In principle, one can
assign each local computation to a different processor, compute the appropriate
sheaf cohomology over a decidedly nicer space (either NU or Y depending on the
circumstances), and aggregate this information to compute the desired cohomology
of X.

• By taking the appropriate linear duals and working with cosheaves, all of our
results transform to computations of homology rather than cohomology.

8.2.3 Level Set Persistence Determines Sub-level set Persistence

We will use Theorem 8.2.15 to obtain a non-obvious theorem in persistence, namely that
level set persistence determines sub-level set persistence. By making use of 8.2.4 we il-
lustrate how one can take the absolute homology cosheaves (or Leray sheaves) equipped
with a barcode decomposition and sweep from left to right, applying 8.2.5 to determine
the barcodes of the associated sublevel set persistence modules. An example is drawn in
Figure 32. Stated formally, we have the following theorem.

Theorem 8.2.21 (Level Set to Sublevel Set Persistence). Let Fk denote the Leray sheaf
associated to a proper map f : X ! R, whose stalk at x is the cohomology of the fiber
Hk(f-1(x)). We can define a functor

Sk : (R,6)op ! Vect Sk(t) := H0((-1, t]; Fk)�H1((-1, t]; Fk-1) ⇠= Hk(f-1(-1, t])

whose value records the cohomology of the entire sublevel set. The maps

Sk(t 0)! Sk(t) t 6 t 0

are defined sheaf theoretically by observing that we have maps

H0((-1, t 0]; Fk)! H0((-1, t]; Fk) H1((-1, t 0]; Fk-1)! H1((-1, t]; Fk-1)

the sum of which define the desired map.



8.2 approaching persistence with sheaves and cosheaves 151

figure 32: Determining Sub-level Set from Level Set Persistence



8.2 approaching persistence with sheaves and cosheaves 152

Observe that since f : X! R is a proper map, the restriction of f to X6t := f-1((-1, t])
is also a proper map. Consequently, we can apply Theorem 8.2.15 to the space X6t in-
stead, but we have to restrict the sheaves to the subspace (-1, t]. Fortunately, restriction
of a sheaf to a subspace is a standard operation in the Grothendieck six-functor for-
malism, presented in 2.5.2: If ◆ : (-1, t] ,! R is the inclusion, then the application of
Theorem 8.2.15 to the restriction reads

Hk(X6t;k) ⇠= H0((-1, t]; ◆⇤Fk)�H1((-1, t]; ◆⇤Fk-1)

The upshot of this formula is that we can define a family of vector spaces, one for each
t 2 R that records the cohomology of the sublevel set X6t

S(t) := H0((-1, t]; ◆⇤Fk)�H1((-1, t]; ◆⇤Fk-1)

given by computing sheaf cohomology of the restriction of the Leray sheaves to the
subspace (-1, t]. What remains to be shown is that there are maps

S(t 0)! S(t) t 6 t 0

that can be defined purely sheaf-theoretically. To do this, we will make use of some
standard adjunctions in sheaf theory.

Theorem 8.2.22. Let f : Y ! Z be a continuous map. The functors f⇤ : Shv(Z) ! Shv(Y)
and f⇤ : Shv(Y)! Shv(Z) form an adjoint pair (f⇤, f⇤) and thus

HomShv(Y)(f⇤G, F) ⇠= HomShv(Z)(G, f⇤F).

In the above adjunction for sheaves, let Y = (-1, t], Z = (-1, t 0] and f = j be the
inclusion of Y as a closed subspace of Z. Observe that if we set F = j⇤G in the above
adjunction, then we get an isomorphism

HomShv(Y)(j⇤G, j⇤G) ⇠= HomShv(Z)(G, j⇤j⇤G).

that is natural in G. This defines the unit of the adjunction:

idShv(Y) ! j⇤j
⇤.

We recall a basic theorem about the pushforward sheaf along a closed immersion [Ive86,
II.5 p. 102].
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Proposition 8.2.23. For j : Y ,! Z the inclusion of a closed subspace, the functor j⇤ :Shv(Y) ! Shv(Z) is exact, i.e. it sends exact sequences of sheaves to exact sequences of
sheaves. Moreover, j⇤ is always exact.

Lemma 8.2.24. Suppose j : Y ,! Z is the inclusion of a closed subspace and F is a sheaf
on Z, then there is an induced map from the cohomology of F on Z to the cohomology
of j⇤F on Y.

Hi(Z; F)! Hi(Y; j⇤F)

Proof. We can read off the proof from the following diagram of spaces.

Y �
� j //

p
Y ��

Z

p
Z��

⇤

Sheaf cohomology is defined as the right derived functor of pushforward to a point. If
we want to compute sheaf cohomology of F, one takes an injective resolution of F

0! F! I•

and applies pZ⇤ to the injective resolution.

RpZ⇤F := pZ⇤I
•

This results in a chain complex of vector spaces, whose cohomology is the sheaf coho-
mology of F. We usually save this step for last as it takes us out of the category of chain
complexes of vector spaces and into the category of graded vector spaces. This is written
as follows.

RipZ⇤F := Hi(pZ⇤I
•) =: Hi(Z; F)

Since j⇤ is exact we will consider an injective resolution of F and pull that back to an
injective resolution of j⇤F. Observe the following string of identities.

RpY⇤j
⇤F := pY⇤j

⇤I•

= (pZ � j)⇤j⇤I•

= pZ⇤j⇤j
⇤I•

The unit of the adjunction defines a map of sheaves

F! j⇤j
⇤F,
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which also defines a map on complexes of sheaves and hence injective resolutions.

I• ! j⇤j
⇤I•

Because j⇤ and j⇤ are exact and preserve injectives, j⇤j⇤I• is an injective resolution of j⇤j⇤F,
thus

RpZ⇤j⇤j
⇤F = pZ⇤j⇤j

⇤I• = RpY⇤j
⇤F

and hence the unit of the adjunction defines a map

RpZ⇤F! RpY⇤j
⇤F ) Hi(Z; F)! Hi(Y; j⇤F.)

Remark 8.2.25 (Abuse of Notation). Common practice in the sheaf literature is to sup-
press the notation j⇤F and to just write

Hi(Y; F) := Hi(Y; j⇤F).

The reasoning is that F is a sheaf on Z and hence the only way to parse the formula on
the left is to realize that the sheaf must be restricted to the subspace Y.

As a corollary we obtain our desired result, Theorem 8.2.21.

8.3 multidimensional persistence

One of the single greatest theoretical challenges to topological data analysis is a foun-
dation for multi-dimensional persistence [Les12]. To consider why data analysts might
want such a thing, consider the following example.

Suppose X is the shape depicted in Figure 33. A common feature of interest in appli-
cations [LSL+

13] is the presence of flares or tendrils. Sublevel set persistence provides a
method for detecting such features. Consider the pth eccentricity functional on X:

Ep(x) :=

✓Z

y2X
d(x,y)pdy

◆p

.

If we filter by superlevel sets, the four endpoints of the perceived flares in Figure 33

will come into view. Said using homology, there are a suitable large range of values t for
which Ep

>t := {x 2 X |Ep(x) > t} will have

H0(E
p
>t;k) ⇠= k4.
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This formally expresses the four flare-like features we see in the space X.
Now suppose that we are not just interested in the number of eccentric features, but

rather we are interested in holes with high eccentricity value, i.e. the persistence module

H1(E
p
>t;k)

is of interest. However, what size of hole is of interest, and what can be regarded as
noise? In other words, what is the behavior of the two-parameter family of vector spaces

MP1(t, r) := H1((E
p
>t)

r;k)

where Yr denotes the set of points within distance r of a subspace Y. This family of
vector spaces defines a functor

MP1 : (R
2,6)! Vect where MP1(t, r) := H1((E

p
>t)

r;k)

where R2 is viewed as a poset under the relation (t, r) 6 (t 0, r 0) if and only if t 0 - t and
r 0 - r are non-negative numbers.

This gives the general definition of a multidimensional persistence module as intro-
duced in [CZ09].

Definition 8.3.1 (Multi-dimensional Sub-Level Set Persistence). Suppose we are given a
map f : X ! Rn, with coordinate functions f(x) = (f1(x), . . . , fn(x)). The ith multidi-
mensional persistence module is defined to be the functor

MPi : (R
n,6)! Vect (t1, . . . , tn) Hi({x 2 X | fj(x) 6 tj, 1 6 j 6 n};k)

Critique of the Definition of Multi-D Persistence

There are a few problems that such a definition suffers from:

• Such a definition is strongly dependent on the particular choice of basis given to
Rn. If one is given an abstract function f, valued in say a manifold M, then the
definition fails.

• The definition is not local.

• There is no decomposition theorem akin to Theorem 6.3.3. There are no barcodes.
This is fundamentally due to Gabriel’s Theorem 6.3.23, but an explicit example is
provided in [CZ09, Sec.5.2], which suggests other invariants as well.
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figure 33: A Shape Described with Multi-D Persistence

Sheaves and cosheaves overcome the first problem by putting level set persistence as
the primary object of interest. Locality is also provided by using sheaves. Our definition
of a multi-dimensional persistence module is simply the Leray sheaf.

Definition 8.3.2 (Multi-D Persistence as the Derived Pushforward). Suppose f : Y ! X is
a continuous map. The right derived pushforward of the constant sheaf Rf⇤kY is gotten
by taking a resolution of kY by the complex of singular cochains eC• and pushing forward
along f. The Leray sheaves are the nth cohomology sheaves of this complex, i.e.

Fn := Hn(f⇤ eC•) =: Rnf⇤kY .
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If f is proper, then the stalks of Fn record the cohomology of the level set, i.e. Fnx
⇠=

Hn(f-1(x);k). We define nth multi-dimensional level set persistence of a proper map
f : Y ! X to be the Leray sheaf Fn.

Remark 8.3.3. If f is not proper, then one can use the pushforward with compact sup-
ports to encode the compactly supported cohomology of the fiber.

One can always obtain the traditional sub-level set definition from this definition by
using a multi-dimensional version of Theorem 8.2.21, the Leray spectral sequence.

Sheaves also suffer from the lack of a nice set of indecomposables, but the
Grothendieck operations provide one possible approach.

8.3.1 Generalized Barcodes

The need for a generalized notion of a barcode comes from the need to communicate
topological summaries to non-topologists. A scientist can easily understand a histogram
and the barcode is only subtly different from a histogram.

Definition 8.3.4 (Generalized Barcodes). Suppose Fn is the Leray sheaf associated to a
proper map f : Y ! X. A generalized barcode for Fn is the expression of F as follows.

Fn ⇠=
M

b2B
(jb)!kZ

b

where jb : Zb ! X are maps indexed by the barcode B and where each (jb)!kZ
b

is
assumed to be indecomposable.

Remark 8.3.5. It is not clear when or if such a generalized barcode exists for a given
f : Y ! X and n.

An example barcode is provided in Figure 34 and discussed in the next example.

Example 8.3.6 (Shadow of the Sphere). Consider the standard Euclidean sphere S2 em-
bedded in R3. Let f : S2 ! R2 be the projection onto the first two factors of R3. The
image X = f(S2) is the closed unit disk.

One can use a multi-D analog of Corollary 8.2.5 to determine the homology of the
two-sphere.

H0(S
2) ⇠= H0(X;bF0) ⇠= k H1(S

2) ⇠= H1(X;bF0) ⇠= 0 H2(S
2) ⇠= H2(X;bF0) ⇠= k
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B0!

figure 34: Two Dimensional Barcodes for the Sphere



9
N E T W O R K C O D I N G A N D R O U T I N G S H E AV E S

In the previous section, we introduced the language of barcodes and integrated them
with a cosheaf-theoretic perspective on Morse theory and persistent homology. The
fundamental idea was that by decomposing a cosheaf into indecomposables, we were
able to understand cosheaf homology via the Borel-Moore homology of the barcode. In
this section, we attempt to do the same thing for cellular sheaves on graphs. We apply
the barcode perspective, wherever possible, to a class of sheaves introduced by Robert
Ghrist and Yasuaki Hiraoka [GH11]. These sheaves were specifically designed to model
the flow of information over graphs and the generalized barcode decomposition can aid
in visualizing this flow.

First, we review some basic definitions for graphs.

Definition 9.0.7. Let X be a directed graph consists of a pair of sets E and V of edges
and vertices and a pair of functions h, t : E! V that return the head and tail of an edge
respectively. A directed edge goes from its tail to its head. The set of incoming edges
to a vertex v, written in(v), is the set of edges whose heads are v, i.e. h-1(v). The set of
outgoing edges at v is the set of edges whose tails are at v, i.e. t-1(v) = v.

Definition 9.0.8. Let X be a directed graph with vertex set V and edge set E. A capacity
function is a function c from the edge set to either the non-negative reals R>0 or the
non-negative integers Z>0.

Definition 9.0.9 (Network Coding Cell Sheaf). Suppose X is a directed graph with a
capacity function c. A network coding sheaf on X is a cellular sheaf F : X ! Vect
constructed as follows:

• To an edge e 2 X we let F(e) = kc(e), a vector space of dimension equal to the
capacity.

• To a vertex v we let F(v) = kc(v) ⇠= �e
i

2in(v)k
c(e).

• The restriction maps are given by ordinary projections for the incoming edges, i.e.
⇢e

i

,v := projF(e
i

) for ei 2 in(v), but for the outgoing edges some non-trivial coding
may be performed, i.e. any linear map �e

k

,v : F(v)! F(ek) for ek 2 out(v) will do.
We write �v = �e

k

2out(v)�v,e
k

for the total coding through v.
159
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Remark 9.0.10. It should be noted that in [GH11], they do not use cellular sheaves. This
was primarily due to the lack of a good reference.

s

t!

b ca

figure 35: Graph with Decoding Wire

In [GH11] they do not define network coding sheaves for arbitrary directed graphs.
Instead, they consider a graph with a distinguished set of sources and targets (senders
and receivers) and they augment the graph by adding decoding wires directed to go
from a target vertex back to a subset of source vertices. Heuristically for Ghrist and
Hiraoka, the purpose of these edges is to make global sections of this sheaf correspond to
closed loops through the graph. This topological reasoning is correct, but oversimplifies
how network codings can produce counterintuitive weavings and splittings of data.
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Example 9.0.11. Consider the graph in Figure 35 with constant capacity function c = 1.
Consequently, all edges and vertices get a one dimensional vector space k = R with the
exception of F(t) ⇠= k2. Define the coding maps ⇢a,s = id = ⇢b,s and

⇢c,t =
h
1
2

1
2

i
.

We pick a local orientation implied by the source and target vertices. The one and only
coboundary matrix can be written as follows:

�0 :=

2

64
-1 1 0

-1 0 1

1 -1/2 -1/2

3

75

Consequently, H0(X; F) ⇠= H1(X; F) ⇠= k. The one global section is supported over the
entire graph; it is not simply a loop through the graph.

The previous example of a network coding sheaf is an example of an indecomposable
sheaf that is not a generalized barcode in the sense of Definition 8.3.4. To better under-
stand the flow of data over graphs, as well as the utility of the barcode perspective, we
consider a simpler class of network coding sheaves.

9.1 duality and routing sheaves

Definition 9.1.1 (Routing Sheaf). A particular type of network coding sheaf is a routing
sheaf. Here we assume that the capacity function is constant c = 1, and the coding maps
�v can be written as a binary matrix with at most one 1 in each column and row. Said
another way, at a vertex v the total coding map maps to zero as many incoming edges
as desired, so long as there is a bijection of the remaining incoming edges and a subset
of the outgoing edges. The total coding map through v is then a matrix representation
of this bijection.

The advantage of routing sheaves is that they are simple to visualize: Start at a source
and use a color pen to track how an edge emanating from that source gets bounced
around under the routing directions at each subsequent vertex. If at any point in your
drawing you run into a vertex that sends your edge’s data to zero, stop on that vertex
with your pen. This argument essentially establishes the following proposition.

Proposition 9.1.2 (Structure Theorem for Routing Sheaves). Suppose X = (V ,E,h, t) is a
directed graph, then every routing sheaf F : X! Vect can be realized as the pushforward
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with compact support of a disjoint union of half-open intervals [—[ or circles, whose
images can intersect only at vertices.

A consequence of this result combined with Poincaré duality is the following corollary.

Corollary 9.1.3 (Duality). For any routing sheaf F one has

H0(X; F) ⇠= H1(X; F).

Proof. By Proposition 9.1.2, every network coding sheaf can be written as a direct sum
of constant sheaves supported on half-open intervals or circles. Half-open intervals
embedded into compact spaces (extending by zero using j!) have trivial cohomology in
both degrees. Poincaré duality for S1 establishes the corollary.

One can also prove this duality in the more general setting of network coding sheaves
via a simple combinatorial argument.

Proposition 9.1.4. For an any network coding sheaf F, we have the following isomor-
phisms: M

v

F(v) ⇠=
M

e

F(e) H0(X; F) ⇠= H1(X; F)

Proof. By construction of a network coding sheaf there is a bijection between the sum of
the vector spaces over the edges e 2 in(v) and the vector space over the vertex v.

M

e2in(v)
F(e) = F(v).

By definition of a graph, every edge is the incoming edge for a unique vertex. Thus, by
summing over all vertices, we sum over all edges without double-counting. This proves
the first isomorphism. The second isomorphism follows by the rank-nullity theorem.

Ideally, one could interpret these cohomology groups as something meaningful to
obtain a useful duality result, but this is still missing. Ghrist and Hiraoka interpret H0

as a vector space spanned by independent information flows, but in the case of routing
sheaves, H1 is the group that counts closed trajectories of information flow. For routing
sheaves, one could say that the Poincaré dual of the fundamental class of an information
loop would yield a point whose removal would cease the flow of information. One might
call this a “cut equals flow” theorem. This is only a pale shade of the greater “Max-Cut
Min-Flow” theorem [EFS56, FF56, Sey77], which compares the maximum possible flow
with the minimum capacity cut required to disconnect the graph.
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9.2 counting paths cohomologically, or failures thereof

Regardless of network coding sheaves connections with duality, one would like to know
what information cellular sheaf cohomology can capture over a graph. Is it possible, for
example, to build a sheaf that encodes source-to-target paths cohomologically? Suppose
we allow the source to have its own independent capacity, without regard for the number
of incoming edges. As the next example shows such a “pseudo network coding” (NC)
sheaf cannot encode source-to-target paths cohomologically.

figure 36: No Decoding Edge figure 37: Decoding Edge

Example 9.2.1 (Decoding Edge and Barcodes). In Figures 36 and 37, the barcode decom-
position of a network coding sheaf is drawn with and without a decoding edge. With the
particular choices made there is no flow from source to target. Yet the sheaf in Figure 36

decomposes as the constant sheaf on two half open intervals and two closed intervals:

Fno ⇠= (jo)!k[0,1) � (jb)!k[0,1) � (ir)⇤k[0,1] � (ig)⇤k[0,1] ) H0(X; Fno) ⇠= k2.

This is bad if we want our sheaf to encode cohomologically the presence of source-to-
target information paths.
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However, with the use of a decoding edge (decoding edges) the network decomposes
into only two half open intervals:

Fde ⇠= (jr)!k[0,1) � (jg)!Sk[0,1) ) H0(X; Fde) ⇠= 0

which was wanted.

9.3 network coding sheaf homology

One of the virtues of the network coding sheaves is that they are easy to construct, have
interesting sheaf cohomology, and provide lots of examples. As such, we will use them
as a testing ground for the new theory of sheaf homology developed in Section 7.4.

figure 38: Network Coding Sheaf
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Example 9.3.1. Consider the network coding sheaf implied by Figure 38. Viewed as a
diagram of vector spaces, it takes the following form:

ks

1~~ 0   ''
ka kb kc

k2t

⇡
1

__
⇡
2

??

⇡
1

77

Since the category of complexes of sheaves is additive, we can consider each indecom-
posable sheaf separately and compute its sheaf homology. If one considers just the red
loop as a constant sheaf (barcode) R, it takes the following form:

ks

1~~ �� ''
ka 0 kc

kt

1
`` @@

1

77

A projective sheaf that surjects onto R is supported on the star of s and t respectively, i.e.
P0 := {s}� {t}:

ks

1{{ ## **
ks � kt ks � kt ks � kt

kt

1
cc ;;

1

44

The kernel sheaf of the natural transformation P0 ) R is also projective, which we call
P1 and finishes the projective replacement of the sheaf R.

0

|| "" ))
[1 - 1] ks � kt [1 - 1]

0

bb << 55
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If we take the colimit of P1 and P0 separately, the sheaf map P1 ! P0 induces a map on
colimits that defines the boundary in the chain complex computing sheaf homology:

@1 : k
4 ! k2

"
1 1 0 1

-1 0 1 -1

#

) H0(X;R) = 0 H1(X;R) ⇠= k2

Repeating the same reasoning for the green barcode G yields homology groups
H0(X;G) = 0 and H1(X;G) ⇠= k. Since our original network coding sheaf F is a direct
sum R�G we obtain that the sheaf homology of the sheaf in Figure 38 is

H0(X; F) = 0 H1(X; F) ⇠= k3.

figure 39: Network Coding Sheaf with Two Decoding Wires
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Exercise 9.3.2. As an exercise, and to indicate the sensitivity of sheaf homology to its
embedding, we ask the reader to verify that the sheaf homology groups of the sheaf in
Figure 39 are

H0(X; F) = 0 H1(X; F) ⇠= k8.
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“What strength, what art can then suffice, or what evasion bear him safe through the
strict sentries and stations thick of angels watching round?”

— John Milton, Paradise Lost, Book II, Line 410 [MP08]

In this section, we consider a candidate application of sheaves and cosheaves to prob-
lems in sensor networks. Section 10.1 outlines some real-world sensors as well as their
mathematical abstraction. With this abstraction in hand, we consider in Section 10.2 the
classic problem of determining when a sensor network has completely covered a region.
The introduction of time-dependent sensor networks necessitates the sheaf-theoretic ap-
proach, despite the fact that it is unwieldy in its most general form.

In Section 10.3 we attempt to “linearize” the sheaves and cosheaves used in study-
ing sensor networks in the hope that sheaf cohomology and cosheaf homology will
give us an obstruction-theoretic approach to sensing. An approach of Henry Adams is
considered in Section 10.3.1, as well as his counter-example to that approach. By using
cosheaf-theoretic reasoning, we give a principled explanation for why this approach fails
in Proposition 10.3.1. An approach of the author and Robert Ghrist is then considered in
Section 10.3.2. This approach succeeds where the previous approach fails, but it too suf-
fers from giving false positives, as the example in Proposition 10.3.8 shows. The example
constructed there, which is joint with David Lipsky, uses one of the 12 indecomposable
representations of the Dynkin diagram D4.

Finally, a linear model for multi-modal sensing is presented in Section 10.4. It was
there that the author realized the necessity of using indecomposables to interpret sheaf
cohomology computations. A delightful examination of the act of sensing in Section
10.4.1 shows how sheaves and cosheaves work in tandem. Theorem 10.4.4 uses a long
exact sequence in sheaf cohomology to obtain a forcing result in multi-modal sensing.
Finally, the role of higher-dimensional barcodes in multi-modal sensing is considered in
Section 10.4.2.

168
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10.1 a brief introduction to sensors

Sensors are devices with delimited purview. They can measure certain properties and
interact with occupants of a particular part of space-time. Examples abound in our world
and they operate via differing modalities. Here are a few examples:

Example 10.1.1 (Sight). Our eyes are highly tuned sensors that can detect photons with
certain frequencies (visible light and colors) and their spatial range can be on the order
of kilometers. Some man-made satellites orbiting the Earth have cameras with a greater
spatial resolution and frequency response — they help us navigate by providing detailed
pictures of roads, weather and climate. Eyes and satellites have a large scale and are very
expensive. Cheaper sensors which can read only very coarse changes in light levels are
found in our traffic lights, door ways and bathrooms.

Example 10.1.2 (Weight and Pressure). Buried in roads or placed under door mats are
sensors designed to respond to pressure. These open doors or gates or initiate changes
in traffic signals. Some are more passive and merely collect data. A cable as thick as
a thumb can be laid across a road and will record when something heavy (like a car)
drives over it. Two spikes in pressure close in time indicate when a car’s front and back
wheels respectively drove over the cable. From this city officials can measure how fast
cars are going as well as density and total volume of traffic.

Example 10.1.3 (Radio Frequency ID). Some readers probably have a university card, or
building card, that grants them access through locked doors merely by tapping on a sen-
sor. Commuters drive cars equipped with sensors that allow them to pass through tolls
without stopping. Some scientists tag animals to study a species’ habits and movements.
In all these cases, the sensor or the tag emits an electromagnetic field with limited spa-
tial range (a few centimeters, meters, or kilometers) and only when inside this range is
a tuned circuit thereby completed, connecting the sensors (card reader, toll booth, etc.)
with the things being sensed (ID card, tag, etc.).

Although the physical mechanisms that allow each of these sensors to sense is differ-
ent, there are some broad commonalities: spatially localized sensors return data in the
presence of certain occupants, which we call intruders.

10.2 the coverage problem : static and mobile

The way we model sensors is to first identify the physical domain where the sensing
is taking place — a two-dimensional Euclidean plane could represent the floor of a
building — and we represent the sensors spatially via their support — a door mat with
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figure 40: Sensors Distributed in a Plane

pressure sensors would be a rectangle in the plane. Or we could think of the field of
view of a camera in a ceiling pointed directly down as a disk in the plane.

For the moment we ignore the type of data a sensor reports (we’ll take that up later
when we work with sheaves and cosheaves) and instead we consider the coverage prob-
lem: Given a collection of sensors distributed in a physical domain D, can we monitor
the entire region without gaps?

If we have good knowledge of the sensors which live on the boundary of our region,
then we can, following the work of Vin de Silva and Robert Ghrist [dSG06b], give a
certificate of coverage using relative homology. However, we frame this question using
sheaves of sets instead, so as to better handle the time-dependent scenario.1

Definition 10.2.1. Let D be a spatial region of interest and denote by D⇥ [0, 1] a region
of space-time. This carries with it a map that keeps track of time via projection onto the
second factor, i.e. ⇡2 : D⇥ [0, 1] ! [0, 1]. We assume that D can be given a cell structure
so that the sensors’ coverage region S ⇢ D⇥ [0, 1] and the evasion region E := Sc can be
written as the union of cells. To study the intruder problem is to analyze the associated
sheaf of sections of the map ⇡ := ⇡2|E : E! [0, 1], which we assume can be made cellular.
Saying that there is an evasion path is to say there is a global section of this map, i.e. a
s : [0, 1]! E such that ⇡ � s = id.

Example 10.2.2. For the situation depicted in Figure 41, the intruder problem has a clear
answer. An intruder can evade detection by residing in either one of the two holes
present. Picking a point and then resting there for all time determines a global section
of the time projection map.

It should be clear that our sheaf-theoretic question is equivalent to a much simpler
one: “Is the complement of the sensed region (the uncovered region) in D non-empty?”
Thinking in terms of sheaves, at this point, buys us nothing.

1 The author would like to thank Gunnar Carlsson and Rob Ghrist for their insights here.
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figure 41: The Space-Time Perspective

figure 42: Mobile Sensor Network

Where sheaves begin to offer a hint of leverage is in the time-dependent scenario. Here
we imagine the sensors can move around in our domain D. Now it is possible that the
sensed region S does not look like a product of space and time.

Example 10.2.3. In Figure 42 we imagine that there is a one-dimensional environment
of interest that sits vertically over each point on the time axis. Between the black lines
is a region that is currently being unmonitored. To begin there is only one connected
component of the unmonitored region. As time marches forward to the right a second
connected component of the unmonitored region opens up, followed shortly by a third.
Two of these three merge and then disappear leaving only one component of unmoni-
tored territory.
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In this case the non-existence of an evasion path is clear: no intruder could have gone
undetected without time-traveling. This corresponds to the ready-seen fact that this map
has no section, i.e. there does not exist a map s : [0, 1]! E such that ⇡ � s = id.

What is the purpose of considering sheaves at all? If we can stare at the drawing
and detect whether a section exists or not, why bother with high-flown machinery?
However, what is easily seen in toy examples, can quickly become unmanageable. The
only mathematics that formalizes intuition about sections is sheaf theory and moreover,
once formalized using cellular sheaves, it can be programmed on a computer.

However, there is a disadvantage with using sheaves of sets. We’d like to be able
to calculate an obstruction that would certify whether a global section exists or not.
One of the stated purposes of using sheaf cohomology is to provide such a calculable
obstruction. Unfortunately, cohomology requires the linear structure of vector spaces,
which we do not have here. In the next section we consider what happens when we
naïvely “linearize” the sheaf of sections of a map.

10.3 intruders and barcodes

In this section, we use cellular sheaves and cosheaves to analyze the intruder problem
in the time-dependent case. We assume that the time projection map ⇡ is cellular in
order to take advantage of the functors in Section 5. By putting a sheaf or cosheaf on
the evasion region and pushing forward along ⇡, we reduce the intruder problem to one
dimension where we can use the barcode perspective of Section 8. There are two main
approaches, both of which have their drawbacks:

• One approach is to study the homology of the evasion region at each moment in
time ⇡-1(t). By Theorem 11.2.17, this determines a cellular cosheaf.

• The second approach is to linearize the space of sections of the map ⇡. To make
the space of sections finite, we pass to the Reeb graph of the evasion region. This
determines a cellular sheaf and stays true to the original intruder problem.

10.3.1 Tracking the Topology over Time

To simplify the topology, we focus on the Reeb graph version of Figure 42. This is drawn
and labeled in Figure 43. Since everything is occurring in two-dimensional space-time,
the only interesting homological invariant of the fiber is H0. Studying this is equivalent
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x zy wa b c

figure 43: Mobile Sensor Network

to studying the pushforward cosheaf bF := ⇡⇤k̂E. In the parlance of [CdS10], this is simply
a zigzag module of the following form:

bF(x) bF(a)
r
x,aoo

r
y,a // bF(y) bF(b)

r
y,boo

r
z,b // bF(z) bF(c)

r
z,coo

r
w,c // bF(w)

kx kaoo // k2y k3b
oo // k2z kcoo // kw

If we choose for each cell in [0, 1] the ordered basis given by the top down ordering
on the page of the cells in the fiber we get the following matrix representations of the
extension maps:

ry,a =

"
1

0

#

ry,b =

"
1 0 0

0 1 1

#

rz,b =

"
1 1 0

0 0 1

#

rx,c =

"
0

1

#
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We can decompose this cosheaf into indecomposables simply by performing the correct
change of basis:

"
y 01 = y1

y 02 = y1 - y2

# 2

64
b 01 = b1 - b2 + b3

b 02 = b1 - b2

b 03 = b2 - b3

3

75

"
z 01 = z2

z 02 = z1 - z2

#

The reader should match the resulting indecomposables with the barcodes drawn in
Figure 43.

kx kaoo // ky 0
1

kb 0
1

oo // kz 0
1

kcoo // kw

0 0oo // ky 0
2

kb 0
2

oo // 0 0oo // 0

0 0oo // 0 kb 0
3

oo // kz 0
2

0oo // 0

The presence of a long barcode may seem surprising. It indicates that there is a
connected component of the evasion region that persists for all time. The following
proposition explains why this long barcode must exist.

Proposition 10.3.1. Suppose E ⇢ D⇥ [0, 1] is a compact connected evasion region such
that ⇡ = ⇡2|E is surjective, i.e. there is at each point in time somewhere an intruder
can evade detection, then the Remak decomposition of ⇡⇤k̂E must have a barcode that
stretches the length of [0, 1].

Proof. The proof starts with the easy observation that if f : Y ! X is a continuous map
and bG is a cosheaf on Y, then we have that H0(Y; bG) ⇠= H0(X; f⇤ bG). This follows from the
commutativity of the following diagrams and functoriality of pushforward.

Y f //

p

��

X
p

��
?

bG f⇤ //

p⇤

&&

f⇤ bG
p⇤

xx

p⇤ bG ⇠= (p � f)⇤ bG

Setting Y = E, X = [0, 1], f = ⇡ and bG = k̂E, we can use the fact that E is connected to
get that p⇤k̂E ⇠= H0(E; k̂E) ⇠= k. We know that any (co)sheaf over [0, 1] can be written as a
direct sum of constant (co)sheaves supported on barcodes.

⇡⇤k̂E ⇠= k̂B
1

� · · ·� k̂B
n

and
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Now we combine this with the fact that homology commutes with direct sums.

k ⇠= H0(E; k̂E) ⇠= H0([0, 1];⇡⇤k̂E) ⇠=
M

i

H0([0, 1]; k̂B
i

) ⇠=
M

i

HBM
0 (Bi).

Consequently, there can be only one closed barcode. We argue that this unique closed
barcode must have support on all of [0, 1]. Since we know that the constant section
1E 2 �(E; k̂X) has support on all of E, the pushforward section ⇡⇤1E that generates the
closed barcode must have support on all of [0, 1], since ⇡ is surjective.

Remark 10.3.2. We have implicitly used sheaf-theoretic reasoning with H0 taking the
place of H0. The argument about the support of the section is better expressed using
stalks.

As a consequence, we obtain a negative result, which is almost identical to a result of
Henry Adams.

Corollary 10.3.3. Having a barcode associated to ⇡⇤k̂E whose support is all of [0, 1] does
not indicate the existence of an evasion path.

Remark 10.3.4. The above proof gives a cosheaf-theoretic explanation of why we
shouldn’t expect barcodes to detect the existence of an evasion path. Homology of the
evasion region is not sensitive to its embedding, thus a long barcode will appear even
if it is embedded in a way that would require an intruder to time travel. In this sense,
Corollary 8.2.5 can be interpreted as a stability result: although half-open barcodes can
pop in and out of existence, based on the embedding, there must always be one and
only one closed barcode.

10.3.2 Linearizing the Sheaf of Sections

In light of the inability of the pushforward cosheaf ⇡⇤k̂E to distinguish when an evasion
path exists or not, we return to the original sheaf-theoretic formulation of the intruder
problem. To make the sheaf of sections finite enough to work with, we take the Reeb
graph of the map ⇡ : E ! [0, 1]. From this setup, we can extract a cellular map of 1-
dimensional cell complexes, normally called ⇡̃ : R(⇡)! [0, 1], but we will abuse notation
and assume that our input ⇡ : E! [0, 1] is already a Reeb graph.

By picking a directionality of [0, 1] we can endow E with the structure of a directed
graph. On this directed graph we can define the following cellular sheaf, which is meant
to pushforward to a linear model of the sheaf of sections. It is very closely related2 to
the network coding sheaves defined in Section 9.

2 In a sense, the sheaf defined here gives all possible codings. It approximates a “stack” of network coding
sheaves.
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e1!

e2!

e3!

f3!
f2!

f1!

e f!

v2!

v1!

v

figure 44: Sheaf of All Possible Evasion Paths

Definition 10.3.5. Let X be an acyclic directed graph. We define a cellular sheaf G that
assigns to an edge the one-dimensional vector space k and assigns to a vertex the space
freely generated by all possible directed routings through that vertex.

We allow special treatment to a subset of sources S and sinks T , where we allow
G(v) = kout(v) for v 2 S and G(v) = kin(v) for v 2 T . All other sources and sinks get the
zero vector space. The restriction mappings send a routing to the edges that participate
in that routing.

Example 10.3.6. For a concrete example, where we focus on a small part of a graph,
consider the graph in Figure 44. The definition of the sheaf G makes

G(v1) =< ei ⌦ fj | i = 1, 2; j = 1, 2, 3 >⇠= k6 ⇢e
i

,v
1

(ej ⌦ fk) = �ij ⇢f
j

,v
1

(ei ⌦ fk) = �jk

and we choose to make G(v2) = 0. The reason we have decided to set G(v2) = 0
comes from the extra information of the projection map to [0, 1]. We call such a vertex
an internal source or sink. In the context of the intruder problem, an internal source
represents an impossible entry point for an intruder. If we push the sheaf G along the
projection map ⇡ we then get the following assignments of data:

⇡⇤G(e) ⇠=< e1, e2, e3 > ⇡⇤G ⇠= G(v1) ⇡⇤G(f) =< f1, f2, f3 >
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x zy wa b c

figure 45: Linearized Sheaf of Sections

Example 10.3.7. Let us consider the example drawn in Figure 45, but now with the sheaf
just defined. We set F = ⇡⇤G, whose values are below:

F(x)
⇢
a,x // F(a) F(y)

⇢
a,yoo

⇢
b,y // F(b) F(z)

⇢
b,zoo

⇢
c,z // F(c) F(w)

⇢
c,woo

kx // ka kyoo // k3b kzoo // kc kwoo

The two restriction maps of any interest include into the top section and the bottom
section, respectively.

⇢b,y =

2

64
1

0

0

3

75 ⇢b,z =

2

64
0

0

1

3

75

Without a change of basis one can see that this sheaf splits as the direct sum of indecom-
posables, whose barcodes are drawn in Figure 45.

The previous example offers a glimmer of hope. No intruder can evade detection and
the absence of a long barcode reflects that. Moreover, the sheaf cohomology computation
shows H0([0, 1]; F) ⇠= 0, which would be a promising shortcut to computing barcodes.
Alas, the linearized sheaf of sections fairs no better than the cosheaf of components. Here
we provide a counterexample, joint with Dave Lipsky, to either of the hopes that non-
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p

q

x zy wa b c

figure 46: Counterexample for the Linearized Sheaf of Sections

zero H0([0, 1]; F) or a long barcode provides an if and only if criterion for the existence
of an evasion path.

Proposition 10.3.8. Although it is true that the existence of an evasion path implies the
existence of a long barcode (and thus H0([0, 1]; F) 6= 0) it is not true that having a long
barcode (or H0([0, 1]; F) 6= 0, which is a weaker condition) implies the existence of an
evasion path.

Proof. In Figure 46 we have drawn the counter-example, which we now explain. The
component coming into p appears immediately after time 0, so it is impossible for an
intruder to enter there. Similarly, there is a component leaving from q that closes up
right before time 1. The pushforward sheaf then takes the following form

kx // k2a k3yoo // k3b k3zoo // k2c kwoo

The maps from F(y) and F(z) to F(b) are the identity maps. The two maps that require
some inspection are built out of a projection and a trace map.

⇢a,y =

"
1 0 0

0 1 1

#

⇢c,z =

"
1 1 0

0 0 1

#

.
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The change of basis required to obtain the desired Remak decomposition indicated by the
barcodes is not so easily seen. The interval decomposition algorithm outlined in [CdS10]
provides a sure-fire method of obtaining it. It is left to the reader to verify the the
barcodes in Figure 46.

Instead, we give a sheaf-theoretic justification for the existence of a long barcode. There
is a unique non-zero global section of G and it is supported everywhere except on the
prong incoming to p and outgoing from q. Explicitly, it comes from choosing a compat-
ible kernel for the restriction matrices ⇢a,y and ⇢c,z. At q the routing through the top
path is annihilated by the “negative” of the routing through the bottom path; it is as if
two intruders are traveling with opposite charges. As a consequence, its support surjects
onto all of [0, 1]. Since H0([0, 1]; F) ⇠= k we can infer the existence of one closed barcode,
and because this section has global support, the barcode must be long.

Remark 10.3.9 (Dynkin Diagrams and Stalks). Recall that F := ⇡⇤G. Consider the sheaf
G implied by Figure 46. When restricted to the open stars at p and q separately G is
equivalent to one of the 12 indecomposable representations of the Dynkin diagram D4;
see [EGH+

11], p. 83. Since the open stars intersect, one can show that the entire sheaf
G on E is indecomposable. This cannot be used directly to show that a long barcode
must exist. The pushforward of an indecomposable representation is not necessarily
indecomposable. However, the argument using stalks indicates that some sections (sub-
representations), must have global support.

10.4 multi-modal sensing

In this section we will explore the following cartoon for multi-modal sensing:

• We have a region W thought of as a topological space that is tame enough to be
triangulated. This space is populated by agents of interest and sensors.

• There is a vector space of properties kn, usually Rn or Cn, and every intruder
is tagged with an unchanging property vector v 2 kn. These property vectors
might record colors (which we pretend has a linear structure), sounds, thermal
signatures or, in the context of wireless network data, a unique wireless SSID (we
imagine scaling corresponds to the strength of the signal). In future applications,
k may be a ring that stores data, just as Z is used to record counts and Zn records
counts of different types of targets.

• There are sensors who monitor subspaces of kn and subspaces of X. “Monitors”
means explicitly that a sensor i with support Vi ⇢ X has attached to it a subspace of
the vector space dual to property space, i.e. Si ⇢ kn⇤. For simplicity, we assume that
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figure 47: Multi-Modal Sensors Distributed in a Plane

Si = span{⇠i} =:< ⇠i >. The act of sensing corresponds to taking a property vector
v 2 kn and returning a number ⇠i(v) that records the strength of the detection.
Outside of the sensor’s support Vi, the sensor must return zero on every vector. In
the overlap of two sensors’ supports, the vector space that is sensed is the internal
direct sum.

This cartoon specifically suggests the use of constructible sheaves and cosheaves as a
model. Because the roles of sensors and intruders are formally dual, we will have to
use both sheaves and cosheaves. Understanding the formal properties of sensing and
evasion will lead us naturally to some long-exact sequences in cohomology, which will
necessitate the introduction of barcodes to understand these results.

We are going to work with a simplified version of the above cartoon. To detach our-
selves from an embedding of the sensors into W, we will use the Čech nerve associated
to the sensors supports. This will provide us with a simplicial complex X and this where
we will define sheaves and cosheaves. Since we can only analyze the intruder problem
inside sensor’s support, we call this a relative intruder problem. Working strictly inside
the coverage region will introduce counter-intuitive results, such as Claim 10.4.9. Nev-
ertheless, this setup is a prototype for future applications of sheaves and cosheaves to
multi-modal sensing.

10.4.1 A Deeper Look at Sensing

Let us investigate a little more deeply the picture of multi-modal sensing presented
to us in the above cartoon. In Figure 48, we consider a situation where we have a
sensor capable of detecting “red” properties and a sensor capable of detecting “green”
properties.3

3 We use scare quotes to indicate that the terms can be substituted for whatever application is of interest.
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r*! g*!

figure 48: Two Multi-Modal Sensors

On the nerve of the sensor cover, the organizing diagram of vector spaces is clear.

< r⇤ >,!< r⇤,g⇤ > -< g⇤ > k ,! k2  - k

The direction of the arrows indicates that a cellular sheaf is best used to collate sensing
abilities. However, the diagram of abstract vector spaces on the right has no way of
telling whether an individual copy of k should correspond to < r⇤ > or < g⇤ > or
< b⇤ >. Such a distinction requires that we embed our sensing sheaf into a global
system of coordinates (kn)⇤X. This motivates the following definition.

Definition 10.4.1 (Sensing Sheaf). Suppose we have a multi-modal sensor network dis-
tributed in a space W. Form the nerve given by the intersections of the sensors’ supports
and call this simplicial complex X. We define a sensing sheaf F by assigning to each
vertex v in X the subspace Sv ⇢ (kn)⇤. Over higher simplices � we assign the following
vector spaces and use the natural inclusions for the maps internal to the sheaf:

F(�) = Sv
0

+ · · ·+ Sv
n

F(�) ,! F(⌧) � 6 ⌧.

Here we have used the internal sum of subspaces to reflect the fact there may be de-
pendencies. The internal sum is only defined in the presence of an ambient space, thus
part of the data of a sensing sheaf is an embedding into the constant sheaf of all sensing
abilities:

◆F : F ,! kn⇤X .

Now suppose we have an intruder, which we imagine as a point in the union of the
red and green sensors in Figure 48. The intruder has a property vector v 2 kn that
lists its various attributes, its colors in this example. What number does the sensor
return while the intruder is in the red sensor’s domain? By design, it is r⇤(v), the
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contraction of the red co-vector and the property vector v. If kn = k3 =< vr, vg, vb >
is a three dimensional property space spanned by the attributes “red,” “green,” and
“blue,” equipping it with the standard Euclidean inner product allows us represent this
measurement by the matrix product

r⇤(v) =
h
1 0 0

i
2

64
vr

vg

vb

3

75 = vr

However, if the sensors can collaborate and share information, then we can store to-
gether the observations when the intruder is in the intersection of the red and green
sensors’ support.

"
r⇤(v)

g⇤(v)

#

=

"
1 0 0

0 1 0

#2

64
vr

vg

vb

3

75 =

"
vr

vg

#

We can package these measurements into a cellular cosheaf, where two observations are
the same modulo the properties unobserved by the sensors.

< r > < r,g >!< g >
k3

< g,b >
 k3

< b >
! k3

< r,b >

One should note that the right side gives an equivalent formulation for the measure-
ment cosheaf of the Figure 48. We have over each cell passed to the quotient space
where the properties that are invisible to each of the sensors is treated as zero. In other
words, the vectors produced by the process of measurement must naturally be consid-
ered modulo the unknown.

Definition 10.4.2 (Evasion Co-Sheaf). Given a sheaf F whose restriction maps are inclu-
sions, along with a fixed embedding into a locally constant sheaf of vector spaces G (we
take G = kn⇤X ), we define the annihilator cosheaf [Ann(F) as follows:

• [Ann(F)(�) = {v⇤ 2 G(�)⇤|v⇤(◆(w)) = 0 8w 2 F(�)}

• If � ⇢ ⌧̄, then r�,⌧ : [Ann(F)(⌧)! [Ann(F)(�) is the inclusion.

When using the language of sensing sheaves, we will call [Ann(F) =: Ê the evasion
cosheaf.
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Lemma 10.4.3. Let F be a sensing sheaf on X, then the evasion cosheaf is canonically
identified as the linear dual of the cokernel of the embedding, that is to say that Ê ⇠=
V̂(cok(◆)) in the diagram below.

0 // F ◆ //

✏✏

G
q //

✏✏

cok(◆) //

✏✏

0

0 V̂(F)oo V̂(G)oo V̂(cok)oo 0oo

Proof. Here we make use of the fact that for cellular sheaves, the cell-by-cell cokernel of
the maps ◆(�) : F(�)! G(�) defines a sheaf. This is not always true for general sheaves.
Reducing the argument to a cell-by-cell one, we have a short exact sequence of vector
spaces

0 // V ◆ //W
q //W/V // 0

where we can identify

AnnW(V) = {' : W ! k |'(v) = 0 8v 2 V} ⇠= (W/V)⇤

and of course all the restriction maps get sent to restriction maps

V2

  

(W/V2)
⇤

✏✏

W

::

$$
V1

OO

>>

(W/V1)
⇤.

This identification of evasion cosheaves with the linear dual of a cokernel means that
we can leverage a classical technique in studying the relative intruder problem. After
all, to every short exact sequence of sheaves we get an induced long exact sequence of
sheaf cohomology. In the context of multi-modal sensing this relates in a precise way
the topology of the total covered region and the cohomology of the sensing and evasion
sheaves.



10.4 multi-modal sensing 184

Theorem 10.4.4 (Sensing-Evasion Decomposition). Given a sensing sheaf of vector spaces
◆ : F! G = k̃n

⇤
X we obtain a long exact sequence of sheaf cohomology groups

0 // H0(X; F) // H0(X;k)�n // H0(X; cok(◆))
�0

// H1(X; F) // · · · // Hk(X; cok(◆))
�k

// Hk+1(X; F) // Hk+1(X;k)�n // Hn+1(X; cok(◆))
�k+1

// · · ·

Where Hk(X; cok(◆)) gets identified with the evasion co-sheaf’s homology Hk(X; Ê) via
the linear duality functor, i.e. V : cok(◆)) E.

Proof. The proof is immediate from standard homological algebra techniques.

10.4.2 Indecomposables, Evasion Sets, Generalized Barcodes

One of the drawbacks of Theorem 10.4.4 is that we have no good interpretation of what
the sheaf cohomology groups mean. Let’s consider again Figure 48, but this time let us
focus only on the Čech complex and each of the three sheaves that appear in the short
exact sequence. This is depicted in Figure 49.

As can be clearly seen each sheaf appearing in the sequence is already written as
a direct sum of indecomposables, which because the nerve is a one-simplex, look like
barcodes. By using the observation Hi([0, 1]; F) ⇠= �Hi

c(Bi), which we have already made
heavy use of, we can determine all the sheaf cohomology of interest for this example.

Example 10.4.5 (Red-Green Sensors). By inspection of the indecomposable presentations
of the three sheaves F, k3X and cok(◆) in Figure 49 we see that

Hi(X; F) ⇠= 0 i = 0, 1; H0(X;k3X) ⇠= k3 H0(X; cok(◆)) ⇠= H0(X; Ê) ⇠= k3

The interpretation of each of the three generators in the evasion cosheaf homology is
that there is a connected component where red, green and blue can separately evade.

Definition 10.4.6 (Evasion and Detection Sets). Let v 2 kn be a property vector and F
a sensing sheaf on X. Define the evasion set Ev to be the set of points in X where an
intruder with property vector v can go without being detected. Dually, call the set of
points where v can be detected the detection set Dv.
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figure 49: Examining the Short Exact Sequence

Since we are working with cellular sheaves where individual sensors have support
equal to the open star of their designated vertex in the simplicial complex X, thus the
detection set Dv is equal to the union of all the stars of the sensors that can see v, hence
Dv is an open union of cells. This proves the following lemma.

Lemma 10.4.7. For any property vector v, the evasion and detection sets form an open-
closed decomposition of X, that is

X = Ev [Dv Ev \Dv = ;, Ev open.

When X is compact this means that Ev is compact as well.

We record another easy lemma, connected to our desire to get an indecomposable
presentation for our evasion cosheaves.

Lemma 10.4.8. Suppose that all sensors must pull their sensing capabilities from a fixed
orthonormal basis of kn⇤, say v⇤1, . . . , v⇤n, then the evasion cosheaf splits as a direct sum
decomposition of constant cosheaves supported on the evasion sets for v1, . . . , vn

Ê ⇠= k̂E
v

1

� · · ·� k̂E
v

n

with the further observation that each k̂E
v

i

has a Remak decomposition as a sum of
constant cosheaves supported on the components of Ev

i

.

Proof. The fact that the sensor capabilities can only be chosen from a fixed orthonormal
basis, implies that we can write the constant sheaf kn⇤X as a direct sum of kX � · · ·� kX
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figure 50: Short Exact Sequence

where we think of each copy of kX as being the constant sheaf generated by < v⇤i >. As
a consequence we get the following diagram

kD
v

1

� � // kX
i
v

⇤
1

��
F

⇡
v

⇤
1

??

⇡
v

⇤
n ��

...
... kn⇤X

kD
v

n

� � // kX

i
v

⇤
n

??

Now we can use for each factor the following standard short exact sequence of sheaves

0 // kD
v

i

// kX // kE
v

i

// 0

and thus the cokernel splits as a direct sum �n
i=1kEv

i

.

The above lemma implies that in certain cases we can interpret the homology of the
evasion cosheaf in terms of the topology of the evasion sets.

We have one more observation we’d like to leverage.

Claim 10.4.9. If sensor’s abilities are pulled from a fixed orthonormal basis v⇤1, . . . , v⇤n
and moreover the detection sets are not pairwise disjoint, then the sensing sheaf has no
global sections.
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Proof. This follows from the fact that if an edge is common to two different detection
sets, then there can be no global sections since the following sheaf has no non-zero
global sections

< v⇤i >,!< v⇤i , v⇤j > -< v⇤j > .

For the example considered in Figure 50 assume that the space of properties is two
dimensional, spanned by red and green. Then the Theorem 10.4.4 provides the following
forcing result

0! H0
c(X; F) ⇠= 0! H0

c(X;k2⇤X ) ⇠= k2 ! H0
c(X; cok)! H1

c(X; F) ⇠= k! 0

which upon careful inspection reveals that the red evasion set must be disconnected.



Part IV

N O V E L M AT H E M AT I C A L C O N T R I B U T I O N S

This part represents the mathematical heart of the thesis, although many of
its results were motivated by the applications considered in Part iii.

Chapter 11 is by far the most technically demanding part of the thesis. It
takes up and proves an equivalence between constructible cosheaves and rep-
resentations of MacPherson’s entrance path category, which hinges on a proof
of the Van Kampen theorem for this category. The full machinery of strati-
fication theory is then used to construct representations of the (definable)
entrance path category from a stratified (definable) map. This part also rests
on proving a codimension-criterion under which Thom’s condition af always
holds.

Chapter 12 proves that Verdier duality is rightly conceived as an exchange
of sheaves and cosheaves. An explicit formula for the derived equivalence of
cellular sheaves and cosheaves is presented.

Chapter 13 uses the formula of Chapter 12 to prove that compactly supported
cellular sheaf cohomology can be viewed as taking a (derived) coend with the
image of the constant sheaf under this formula.

Chapter 14 proves that the derived category of cellular sheaves over a one-
dimensional base space is equivalent to a graded category. This formalizes
the intuition of why spectral sequences over graphs always collapse on the E2

page.

Chapter 15 introduces the interleaving distance for sheaves defined on a met-
ric space. Although officially an extended pseudo-metric on the category of
pre-sheaves, we prove it is an extended metric on the category of sheaves.
One of the most fundamental properties of this extended metric is that global
sections places sheaves into distinct connected components. To illustrate the
theory more concretely, we take up an explicit description of the space of
constructible sheaves over the real line.

188



11
T H E D E F I N A B L E E N T R A N C E PAT H C AT E G O RY

“Facilis descensus Averno;
noctes atque dies patet atri ianua Ditis;
sed revocare gradum superasque evadere ad auras, hoc opus, hic labor est.”

— Virgil’s Aeneid, Book 6, Lines 124-9

Fundamentally, one-dimensional persistent homology tries to understand topological
changes in a one-parameter family of spaces. Multi-dimensional persistence tries to
understand topological changes in a multi-parameter family of spaces; the leap in com-
plexity from one dimension to two can not be overstated. The model problem of interest
is to describe how the homology of the fiber of a map f : Y ! X changes as one queries
points or subsets in X. For general maps, this problem is entirely too unwieldy.

In this chapter we focus on a broad class of maps where this problem has an inter-
esting answer: definably stratified maps. Informally, stratified maps are glued together
fiber bundles. Definable maps are ones that can be defined with finitely many logical
operations. Every definable map is stratified so we study simply definable maps.

The upshot of this chapter is that the homology of the fibers of a definable map give
rise to a representation of a particular quiver with relations — a category in other words
— called the definable entrance path category, whose general version was introduced
by MacPherson to study general stratified maps. If one considers the opposite of the
entrance path category, i.e. the exit path category, one obtains a constructible sheaf,
which we now define.

Definition 11.0.10 (Constructible Sheaves and Cosheaves). Let F be a sheaf valued on a
topological space X. One says that F is constructible if there exists a filtration by closed
subsets

; = X-1 ⇢ X0 ⇢ X1 ⇢ · · · ⇢ Xn = X

such that on the each connected component of the space Xk = Xk - Xk-1, the restricted
sheaf F|Xk

(the pullback of F along the inclusion Xk ,! X) is locally constant. Alternatively,
instead of asking for a filtration one can ask for a decomposition of X into disjoint pieces
X� over which the restricted sheaf is locally constant.

189
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Dually, we will call a cosheaf, with costalks valued in vect, constructible if its linear
dual is a constructible sheaf.

One of the purposes of this chapter is to impose further conditions on the nature of the
filtration so that we get nice properties. As stated, there is nothing to prevent us from
using a one step filtration of the Cantor set. Expressing precisely these extra conditions
will require the introduction of stratification theory.

11.1 stratification theory and tame topology

As wonderful as fiber bundles and local systems may be, they still fail to capture the sort
of structure we are interested in because the topology of the fiber can never change. In
order to bring cosheaves into contact into a larger realm of mathematics, we will need to
consider stratified maps. To whet the appetite, stratified maps will allow us to describe
in one language:

morse theory — Morse functions are just particular instances of stratified maps f :
M! R.

picard-lefschetz theory — the complex analog of Morse theory studies algebraic
maps ⇡ : X! C, which are necessarily stratified.

point cloud data and persistence — Semialgebraic families are described by
semialgebraic maps, which are stratified.

In other words, stratification theory gives a system of geometry for exploring a wealth
of examples, appearing in mathematics and nature. Stratification theory does this by
breaking up a space or map into regions, over which the usual analysis of manifolds
and fiber bundles apply.

Definition 11.1.1 (Decomposition). A decomposition of a space X is a locally finite par-
tition of X into locally closed subsets (sets of the form U \ Z for U open and Z closed)
{X�}�2P

X

called pieces, which satisfy the axiom of the frontier. Consequently, PX is a
poset. When the pieces have the additional structure of being manifolds, we call them
strata.

Remark 11.1.2. A stratum is sometimes used to mean either a union of strata of a fixed
dimension or a single connected component in a decomposition. We usually prefer the
latter meaning.

We have already encountered an example of a decomposition of a space X, namely
a cell complex. Here each piece is homeomorphic to Rk for some k, which can vary
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from stratum to stratum. A graph is naturally decomposed into its vertices and open
edges. For a decomposition that is not a cell complex, consider the complex numbers C

partitioned into the sets {0} and C - {0}.

Definition 11.1.3. Suppose (X,PX) and (Y,PY) are decomposed spaces, then a decomposition-
preserving map is a continuous map f : X ! Y that sends pieces to pieces, i.e. we have
a commutative square

X f //

✏✏

Y

✏✏
PX

P
f // PY

In the case where the pieces are strata we call such a map a stratum-preserving map.

Much like how the notion of a category emerged through the study of functors, in
some sense the necessity for decompositions more general then simplicial or cell com-
plexes came about because not all maps preserved the pieces of those decompositions.
We give an example of such a map.

Example 11.1.4 (Blow-Ups). Consider the map

f : R2 ! R2 f(x,y) = (x, xy).

This map is not triangulable, see [Shi] page 305. This map is related to the operation in
algebraic geometry known as “blowing up at a point.” The blow-up map is an endless
source of interesting geometry and counter-examples, so it is worth describing. Recall
that the space of lines in R2, written RP1 is defined to be the quotient of R2 - {(0, 0)} by
the relation that (x,y) ⇠ (�x, �y) for any � 6= 0. Topologically, this quotient is the circle
S1. Tracing the image of the top arc of a circle from 0 to ⇡ through the quotient map one
gets the complete circle in RP1.

The blow-up B of R2 at the origin is defined to be the closure of the image of the map

R2 - {(0, 0)} ,! R2 ⇥RP1

where the map to the first coordinate is the inclusion and the map to the second coordi-
nate is the quotient map. The blow-up map ⇡ : B ! R2 is the projection back from the
closure of the graph of this map to the closure of the domain, i.e. R2. Thus the fiber over
(0, 0) is a circle, but the fiber over any other point is a single point. One can visualize
this by restricting the map to a closed disk centered at the origin. The image is contained
in a solid torus and the closure of the image will assign the core circle to the origin. The
image of D2 - {(0, 0)} is commonly visualized as a spiral staircase as in Figure 51 whose
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figure 51: Blowing up at a Point

boundary traces out a torus knot. See [AK10] for a treatment of different constructions
of real blow-ups and their functorial properties.

Decomposing spaces and maps gives some control over how these things are built
up out of pieces, but it is not quite strong enough to tame the geometry of interest. In
particular, the topologist’s sine curve drawn in Figure 52 can be decomposed into the
two pieces

X⌧ := {(x, sin(1/x)) | x 6= 0}[ {(0,y) |y 2 [-1, 1]} =: X�
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figure 52: Topologist’s Sine Curve

that satisfy the axiom of the frontier X� ⇢ X̄⌧, but it does not have the intuitively desired
property that [Lu76, p.131].

dimX� < dimX⌧

Further regularity conditions must be imposed to capture this property and other
desired features that hold for piecewise-linear, algebraic, semi-algebraic, sub-analytic
and other geometries. Systematic overviews of these different regularity conditions are
overwhelming and highly technical. For a taste, one should consult Jörg Schürmann’s
remarkable service in writing down 14 different regularity conditions and their corre-
sponding implications in [Sch03, Rmk. 4.1.9]. To keep the exposition light we focus on
a geometric condition and its topological generalization as they have historically had a
strong influence on stratification theory.

11.1.1 Whitney Stratified Spaces

In this section we relay two ways of fusing manifold pieces into non-manifold wholes.
The champions of this section are Hassler Whitney and René Thom.1 In 1965, Whitney,
whose approach relies on the geometry of tangent planes and secant lines, defined two
properties that a stratified space should possess [Whi65a, Whi65b]. Thom, who pro-
posed in a 1962 paper [Tho62] a definition of a stratified space using tubular neighbor-
hoods, later extracted the topological consequences of Whitney’s definition and outlined
a more general definition of a stratified space [Tho69]. Thom’s definition was first ar-
ticulated carefully by John Mather in his famous 1970 Harvard “Notes on Topological

1 For more historical context of these approaches, written by experts, we recommend the recent arti-
cle [Gor12] and Part I, Section 1 of [GM88].
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figure 53: Diagram for Whitney Condition (b)

Stability” [Mat12], which went unpublished for 42 years and are to this day an excellent
resource for learning the theory.

Proving that any Whitney stratified space admits the structure of a Thom-Mather
stratified space requires substantial work. Thus, we present them below as separate
definitions, beginning with Whitney’s. We outline the properties that make Whitney
stratified spaces nice as motivation for Thom’s definition. After introducing both of
these definitions we will present a proof2 that says that closed unions of strata in a
Thom-Mather space have regular neighborhoods, i.e. an open neighborhood and a weak
deformation retraction. This result plays a key role in Theorem 11.2.17.

Definition 11.1.5 (Whitney Stratified Spaces). A Whitney stratified space is a tuple
(X,M, {X�}�2P

X

) where X is a closed subset of a smooth manifold M along with a de-
composition into pieces {X�}�2P

X

such that

• each piece X� is a locally closed smooth submanifold of M, and

• whenever X� 6 X⌧ the pair satisfies condition (b). This condition says if {yi} is a
sequence in X⌧ and {xi} is a sequence in X� converging to p 2 X� and the tangent
spaces Ty

i

X⌧ converges to some plane T at p, and the secant lines `i connecting xi
and yi converge to some line ` at p, then ` ✓ T .

Remark 11.1.6. We have omitted condition (a) because it is implied by condition
(b) [Mat12, Prop. 2.4]. Condition (a) states that if we only consider a sequence yi in X⌧
converging to p such that the tangent planes Ty

i

X⌧ converge to some plane T , then the
tangent plane to p in X� must be contained inside T .

2 A proof appears in Mark Goresky’s thesis [Gor76] that was never published and which he graciously
provided to the author. We have since modified that proof to suit our purposes.
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The Whitney conditions are important because so many types of spaces admit Whit-
ney stratifications, the most important being semi-algebraic and sub-analytic spaces. Re-
markably, these conditions about limits of tangent spaces and secant lines imply strong
structural properties of the space. To give the reader a taste for the properties enjoyed
by Whitney stratified spaces, we provide a brief list:3

- Dimension is Well-Behaved: If X� ✓ fr(X⌧) := X̄⌧ -X⌧, then dimX� < dimX⌧. See
Proposition 2.7 of [Mat12] for a proof. This rules out the topologist’s sine curve in
Figure 52 from being Whitney stratified.

- Good Group of Self-Homeomorphisms: If x and y belong to the same connected
component of a stratum X�, then there is a homeomorphism h : M!M preserving
X and other strata such that h(x) = y ([Mat12] pp. 480-481).

- Local Bundle Structure: Every stratum X� has an open tubular neighborhood T�
and a projection map ⇡� : T� ! X� making it into a fiber bundle. This bundle is
equipped with a “distance from the stratum” function d� : T� ! R>0. If we define
S�(✏) to be d-1

� (✏), then we can identify the map ⇡� : T� ! X� with the mapping
cylinder of the restricted map ⇡ : S�(✏) ! X� ([Gor78] p. 194). Moreover, the fiber
of the bundle has the stratification of a cone on a link.

- Triangulability: Every Whitney stratified space can be triangulated [Gor78].

The third property is historically the most important. It guarantees that a Whitney
stratification “looks the same” along all points in a stratum. The tubular neighborhoods
exhibit this local triviality. This condition will be taken as primary when considering
Thom-Mather stratifications.

11.1.2 Stratified Maps and a Counterexample

Our main purpose for considering Whitney (and hence Thom-Mather) stratified spaces
is to understand stratified maps. Such maps include Morse functions as a special case
and are a good model for understanding moduli problems that commonly arise in ap-
plications. Over a given stratum, a stratified map looks like a fiber bundle and all fibers
are homeomorphic in a stratum-preserving way. However, as we try to compare a fiber
over one stratum with a fiber over that stratum’s frontier, the blow-up map of Example
11.1.4 frustrates our intuition. Thus, we introduce a more restrictive class of stratified
maps called Thom maps. Finally, we illustrate that such general stratified maps are not
necessarily closed under pullback. This motivates the move to tame topology in Section
11.1.3.

3 Here we follow part of MacPherson’s summary in the appendix of his 1991 Colloquium notes [Mac91].
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Definition 11.1.7 (Whitney Stratified Map). Suppose f : M ! N is a smooth map be-
tween manifolds that contain stratified spaces (X, {X�}�2P

X

) and (Y, {Y�}�2P
Y

) such that
f(X) ⇢ Y with f|X proper. We say f is a Whitney stratified map if the pre-image of
each stratum Y� is a union of connected components of strata of X and f takes these
components submersively onto Y�.

Remark 11.1.8. To say that a map is (Whitney) stratifiable is to say there exists a strati-
fication of X and Y such that the map is stratified. Often we will neglect to include the
ambient manifolds and will say “Let f : X! Y be a stratified map.”

Remark 11.1.9. When N = Y is stratified as a single stratum, we say that f is a stratified
submersion, i.e. f|X is proper and for each stratum X� f|X

�

is a submersion.

Recall that Ehresmann’s theorem states that proper submersions are fiber bundles.
Thus, over each stratum a stratified map is a fiber bundle. However, Ehresmann’s the-
orem does not say that the local trivializations can be chosen to respect the stratifica-
tion. This stratified analog of Ehresmann’s theorem is expressed in Thom’s first isotopy
lemma [GM88, p. 41].

Lemma 11.1.10 (Thom’s First Isotopy Lemma). Let f : M ! Rn be a (proper) stratified
submersion for X ✓ M a Whitney stratified subset. Then there is a stratum-preserving
homeomorphism

h : X! Rn ⇥ (f-1(0)\X)

which is smooth on each stratum and commutes with the projection to Rn. In particular,
the fibers of f|X are homeomorphic by a stratum preserving homeomorphism.

Remark 11.1.11. Of course, this implies that for a general stratified map, for every stra-
tum of the codomain Y�, the fibers of f|f-1(Y

�

) : f-1(Y�) ! Y� are homeomorphic in a
stratum-preserving way. This lemma will be used implicitly throughout the section. It
expresses the idea that stratified maps are “glued together fiber bundles.”

As one can imagine, there is a second isotopy lemma, which applies to a more restric-
tive class of stratified maps. We will not state the second isotopy lemma, rather we will
use some of the theory leading up to it.

Counterexamples Creep In

One would like to say that given a general (not necessarily Thom) stratified map f : X!
Y, one could take a path � : [0, 1] ! Y so that the pullback �⇤f : f-1(�) ! I is stratified
and hence, by the above corollary, a Thom mapping. However, as the next example
shows, the pullback need not be stratifiable, so the hypothesis for the corollary fails.4

4 We are indebted to Mark Goresky for suggesting the key ideas of this example.
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figure 54: Preimage of the Spiral is Not Stratifiable
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Example 11.1.12. The blow-up map ⇡ : B! R2 is a Whitney stratified map that is not a
Thom mapping. The closure S of the “quick spiral”

S := cl{(r, ✓) 2 R2 | r = e-✓
2

}

is also Whitney stratified despite wrapping around the origin infinitely many times
([Pfl01] Example 1.4.8). However, the inverse image ⇡-1(S) cannot be stratified because
the inverse image of (0, 0) is S1, which is of the same dimension as the inverse image of
the spiral, despite the fact that the former is in the frontier of the latter; see Figure 54.
Since being Whitney stratified implies a drop in dimension of the frontier, contraposition
shows that the inverse image cannot be Whitney stratified.

In Theorem 11.2.17 we will give a direct geometric construction of several cosheaves
associated to a stratified map. To do so we will need to consider a class of subsets and
maps that have all the geometric properties of stratified spaces as well as being preserved
under inverse images. This is provided in Section 11.1.3.

11.1.3 O-minimal Structures

Although stratification theory provides a first pass at taming geometry, it is unsuitable
from our perspective because pathologies can still creep in via the inverse image, as
Example 11.1.12 showed. General stratified spaces and maps are still not tame enough.
However, most sets and maps encountered in nature have extra structure. For instance,
computer scientists commonly work with piecewise-linear (PL) spaces, which are de-
scribable in terms of affine spaces and matrix inequalities. Some algebraic geometers
work with semialgebraic spaces, which use zeros and inequalities of polynomials to de-
fine their spaces. Analysts tend to use analytic or subanalytic spaces, because the theory
is well behaved. Traditionally, one has had to make a choice, once and for all, to speak
only of PL geometry, or only of algebraic geometry, or only of analytic geometry. The
curse of Babel has confused and separated these domains for a hundred years.

In 1984, Grothendieck declared that an axiomatic “tame topology” or “topologie mod-
érée” should be developed by extracting out precisely those properties that make these
classes of spaces good ones [Gro97]. MacPherson put forth in his lecture notes for the
1991 AMS colloquium lectures a definition of what should constitute a “good” class of
subsets of a manifold M [Mac91]. Namely, a subset S is good if there is a Whitney strat-
ification of M such that S is a union of strata. These subsets should be closed under the
finite set-theoretic operations of unions, intersections and differences. Additionally, the
closure of any good subset should be good.
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In 1996, Lou van den Dries and his student Chris Miller set forth a most satisfactory
definition in their paper “Geometric Categories and O-minimal Structures” [vdDM96].
Taking requests from sheaf theorists [SV96] and other working geometers, their paper
is a valuable service to the community. It globalized a local solution to Grothendieck’s
program known as o-minimal topology. The theory of o-minimal topology is grounded
in model theory and logic, but it has left almost no trace from those fields. All the
logical operations of 8, 9,_,^ are converted into familiar operations in geometry. Each
of the above languages (PL, semialgebraic, subanalytic) are instances of an o-minimal
structure. The common fundamental theorems, each expressed in their own language,
can be reduced to universal logical operations, and hence geometric ones. We will start
by examining o-minimal structures as they form the local models of Miller and van den
Dries definition. The reader is urged to consult the textbook “Tame Topology and O-
minimal Structures” [vdD98] as it is an excellent introduction that requires virtually no
pre-requisites.

Definition 11.1.13 ([vdD98], p. 2). An o-minimal structure on R is a sequence O =
{On}n>0 satisfying

1. On is a boolean algebra of subsets of Rn, i.e. it is a collection of subsets of Rn

closed under unions and complements, with ; 2 On;

2. If A 2 On then A⇥R and R⇥A are both in On+1;

3. The sets {(x1, . . . , xn) 2 Rn|xi = xj} for varying i 6 j are in On;

4. If A 2 On+1 then ⇡(A) 2 On where ⇡ : Rn+1 ! Rn is projection onto the first n
factors;

5. For each x 2 R we require {x} 2 O1 and {(x,y) 2 R2|x < y} 2 O2;

6. The only sets in O1 are the finite unions of open intervals and points.

When working with a fixed o-minimal structure O on R we say a subset of Rn is defin-
able if it belongs to On. A map is definable if its graph is definable.

Remark 11.1.14. One should note that the third and sixth property together prohibit
any spiral that wraps infinitely many times around the origin from being part of an
o-minimal structure. Thus, the quick spiral in Example 11.1.12 is not definable.

Now we prove that definable sets and maps are closed under pullbacks.

Lemma 11.1.15. Suppose f : X! Z and g : Y ! Z are definable maps, then the pullback
X ⇥Z Y := {(x,y) 2 X ⇥ Y | f(x) = g(y)} is a definable set and the restrictions of the
projection maps are definable as well.
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Proof. First note that if X 2 On and Y 2 Om, then X ⇥ Y = (X ⇥ Rm) \ (Rn ⇥ Y) is
in On+m. Since �f and �g are definable, we know that �f ⇥ Y = {(x,y, f(x))} and �g ⇥
X = {(x 0,y 0,g(y 0)} are both definable subsets of X ⇥ Y ⇥ Z. Since the intersection is
definable, and a point in the intersection has (x,y, f(x)) = (x 0,y 0,g(y 0)), the image of the
projection to X⇥ Y is the pullback. One can then use B.3 of [vdDM96] to conclude that
the restriction to the pullback of the projection maps to X and Y is definable as well.

There are surprising facts that follow from the axioms of an o-minimal structure. For
example, if A 2 O, then the closure Ā is in O ([vdD98] Ch. 1, 3.4). Another surprising
fact is that definable sets can be Whitney stratified [Loi98]. Thus, these sets meet the
requirements of MacPherson to form a good class of subsets. Perhaps even better than
MacPherson’s sets, definable sets can be given finite cell decompositions, where “cell”
has its own special meaning ([vdD98] Ch. 3).

The prototypical o-minimal structure is the class of semialgebraic sets, which has be-
come increasingly relevant in applied mathematics.

Definition 11.1.16. A semialgebraic subset of Rn is a subset of the form

X =
p[

i=1

q\

j=1

Xij

where the sets Xij are of the form {fij(x) = 0} or {fij > 0} with fij a polynomial in n
variables.

The only semi-algebraic subsets of R are finite unions of points and open intervals.
From the definition, one sees that the class of semialgebraic sets is closed under finite
unions and complements. The Tarski-Seidenberg theorem states that the projection
onto the first m factors Rm+n ! Rm sends semialgebraic subsets to semialgebraic sub-
sets [Cos02]. We can deduce from this theorem all of the conditions of o-minimality.

Semialgebraic maps are defined to be those maps f : Rk ! Rn whose graphs are
semialgebraic subsets of the product. It is a fact that semi-algebraic sets and maps can
be Whitney stratified [Shi97]. This allows us to consider the following example of a
semi-algebraic family of sets:

Example 11.1.17 (Point-Cloud Data). Suppose Z is a finite set of points in Rn. For each
z 2 Z, consider the square of the distance function

fz(x1, . . . , xn) =
nX

i=1

(xi - zi)
2.
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figure 55: Point Cloud Data

By the previously stated facts we know that the sets

Bz := {x 2 Rn+1 | fz(x1, . . . , xn) 6 xn+1}

are semialgebraic along with their unions and intersections. Denote by X the union of
the Bz. The Tarski-Seidenberg theorem implies that the map

f : X! R f-1(r) := [z2ZB(z,
p
r) = {x 2 Rn | 9z 2 Z s.t. fz(x) 6 r}

is semialgebraic. In particular the topology of the fiber (of the union of the closed balls)
can only change finitely many times.

We conclude with the definition Miller and van den Dries proposed in section 1

of [vdDM96]. This definition allows us to verify definability locally, and allows us to
work inside manifolds other than Rn.

Definition 11.1.18 (Analytic-Geometric Categories). A analytic-geometric category G is
given by assigning to each analytic manifold M a collection of subsets G(M) such that
following conditions are satisfied:

1. G(M) is a boolean algebra of subsets of M, with M 2 G(M).
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2. If A 2 G(M), then A⇥R 2 G(M).

3. If f : M! N is a proper analytic map and A 2 G(M), then f(A) 2 G(N).

4. If A ✓ M and {Ui}i2⇤ is an open covering of M, then A 2 G(M) if and only if
A\Ui 2 G(Ui) for all i 2 ⇤.

5. Every bounded set in G(R) has finite boundary.

Remark 11.1.19. This defines a category in the usual sense. An object of G is a pair
(A,M) with A 2 G(M). A morphism f : (A,M)! (B,N) is a continuous map f : A! B
whose graph

�(f) := {(a, f(a)) 2M⇥N |a 2 A}

is an element of G(M⇥N).

The category of G-sets and G-maps, although we will prefer to use the term “defin-
able,” has all the properties one could desire, including being closed under inverse
images [vdDM96, D.7] (as long as the domain is closed) and Whitney stratifiabil-
ity [vdDM96, D.16].5

11.1.4 Thom-Mather Stratifications

Definition 11.1.20 (Control Data). Let (X,M, {X�}�2P
X

) be a Whitney stratified space and
{(T�,⇡�,d�)} a family of tubular neighborhoods. We call this family a system of control
data if the following commutation relations are satisfied: if X� 6 X⌧, then

⇡� � ⇡⌧ = ⇡�

d� � ⇡⌧ = d�

whenever both sides of the equations are defined.

Remark 11.1.21. In Figure 56 we have drawn some fibers of the retraction maps for two
incident strata. Notice how the fibers must bend in order for the second compatibility
condition to hold.

Mather proves that every Whitney stratified space admits a system of control data.
The following definition axiomatizes the properties enjoyed by a Whitney space with a
system of control data.

5 The authors of [vdDM96] acknowledge that there is a gap in the proof of Whitney stratifiability of
G-maps, but Ta Lê Loi [Loi10] and others [NTT14] have since filled in this gap.
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figure 56: A System of Control Data

Definition 11.1.22 (Thom-Mather Stratified Spaces). A Thom-Mather stratified space
consists of a Hausdorff, locally compact topological space X with countable basis for
its topology with some smooth structure; a decomposition into topological manifolds
{X�}�2P

X

; and a family of control data {(T�,⇡�,d�)}�2P
X

, where T� is an open tubular
neighborhood of X�, ⇡� : T� ! X� is a continuous retraction, and d� : X� ! [0,1) is a
continuous distance function. We require that the following conditions hold:

• X� = d-1
� (0) for all �.

• For any pair of strata X�,X⌧, define T�,⌧ := T� \X⌧, ⇡�,⌧ := ⇡�|T
�,⌧ and d�,⌧ := d�|T

�,⌧ .
We require that

(⇡�,⌧,d�,⌧) : T�,⌧ ! X� ⇥ (0,1)

is a smooth submersion. When T�,⌧ 6= ;, i.e. when X� 6 X⌧, this implies dimX� <
dimX⌧.

• For any trio of strata X�,X⌧ and X� we have

⇡�,⌧ � ⇡⌧,� = ⇡�,�

d�,⌧ � ⇡⌧,� = d�,�

whenever both sides of the equation are defined.

Remark 11.1.23. One should observe that the definition does not require an embedding
into an ambient space. Thus Thom-Mather stratified spaces allow us to treat Whitney
stratified spaces intrinsically. Any Whitney stratified space (X,M) equipped with a sys-
tem of control data {(T�,⇡�,d�)}�2P

X

defines a Thom-Mather stratified space by intersect-
ing each T�, which is open in M, with X.

Thom-Mather stratified spaces exhibit most of the good properties of Whitney strati-
fied spaces. The proof that Thom-Mather spaces can be triangulated was carried out by
Goresky [Gor78], among others. His proof views the lines of Figure 56 not as fibers of
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the retraction map ⇡�, but rather6 as fibers of a radial projection map to the boundary of
a tubular neighborhood.

Definition 11.1.24 (Family of Lines). A family of lines on a Thom-Mather stratified
space is a system of radial projections

r�(✏) : T� -X� ! S�(✏) := d-1
� (✏)

one for each stratum X�, and a positive number �, such that whenever 0 < ✏ < � and
X� 6 X⌧, the following commutation relations hold:

1. r�(✏) � r⌧(✏ 0) = r⌧(✏ 0) � r�(✏) 2 S�(✏)\ S⌧(✏ 0)

2. d� � r⌧(✏) = d�

3. d⌧ � r�(✏) = d⌧

4. ⇡� � r⌧(✏) = ⇡�

5. If 0 < ✏ < ✏ 0 < �, then r�(✏ 0) � r�(✏) = r�(✏ 0)

6. ⇡� � r�(✏) = ⇡�

7. r�(✏)|T
�

(✏)\X
⌧

: T�(✏)\X⌧ ! S�(✏)\X⌧ is smooth

Remark 11.1.25. Every Thom-Mather stratified space admits a family of lines. This is the
first proposition of [Gor78].

Any family of lines can be used to identify a tubular neighborhood T� as a mapping
cylinder for the restricted projection map ⇡� : S�(✏) ! X�. To do so, one defines a
stratum-preserving homeomorphism

h� : T� -X� ! S�(✏)⇥ (0,1) h�(p) := (r�(✏)(p),d�(p))

and then extends the map in a suitable way, i.e. one takes S�(✏)⇥ [0,1) t X� and iden-
tifies S�(✏)⇥ {0} with its image under ⇡� : S�(✏) ! X�. One can check that this allows
us to extend our map h� to T�, which we do so without changing notation. One should
interpret this extended homeomorphism h� as providing a system of coordinates that is
convenient for analyzing neighborhoods of strata. We use this system of coordinates in
the following theorem.

6 This description does not hold in higher dimensions.
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Proposition 11.1.26 (Regular Neighborhoods of Closed Unions of Strata). Let X be a
Thom-Mather stratified space and W = [�2P

W

X� be a closed union of strata of X. The
inclusion

W ,! UW(✏/2) :=
[

�2P
W

T�(✏/2) ✓ X

is a homotopy equivalence.

Proof. Given a Thom-Mather stratified space, we can equip it with a family of
lines [Gor78]. We are going to use the family of lines to construct a weak defor-
mation retraction of UW(✏/2) inside a larger open neighborhood UW(✏) := [�2P

W

T�(✏).
The idea is to shrink each tubular neighborhood T�(✏/2) to X� in such a way that a
line connecting a point p 2 S�(✏/2) and r�(✏)(p) 2 S�(✏) is stretched to connect ⇡�(p)
and r�(✏)(p) after the homotopy. Figure 57 indicates which neighborhoods are to be
collapsed.

To accomplish this stretching, let f : R ! [0, 1] be any smooth function with the
following properties:

f(x) = 0 if x 6 1
2

f(x) = 1 if x > 3
4

f 0(x) > 0 if x 2 (12 , 34)

The homotopy H� : U⇥ [0, 1]! U defined below shrinks T�(✏/2) to X�:

H�(p, t) :=

�
p if p /2 T�(✏)

h-1
� (r�(✏)(p),d�(p)[(1- t)f(d�(p)/✏) + t]) if p 2 T�(✏)

The homotopy is just a straight-line homotopy between the usual distance function d�
and the shrunken one d�(p)f(d�(p)/✏). Moreover, since the homotopy only affects the
distance coordinate, properties two and three of Definition 11.1.24 imply that if X� 6 X⌧
then

d⌧(H�(p, t)) = d⌧(p) and d�(H⌧(p, t)) = d�(p).

As such, the shrinking homotopies can be applied in any order, i.e.

H⌧(H�(p, t), s) = H�(H⌧(p, s), t).

Observe that in a Thom-Mather stratified space, if X� 6= X� 0 are two strata of the same
dimension, then T� \ T� 0 = ;. Consequently, the definition for H� extends to a homotopy
Hi that shrinks all the neighborhoods of strata of dimension i at the same time; one just
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figure 57: Two Sets of Tubular Neighborhoods

defines Hi(p, t) = H�(p, t) if p 2 T�(✏). The commutation relation now extends to the
statement that for any i and j

Hi(Hj(p, t), s) = Hj(Hi(p, s), t).

Thus, our desired homotopy can be defined to be

H(p, t) := H0(H1(H2(· · · (Hm(p, t), t) · · · , t), t), t)

where the order of the composition doesn’t matter and m is the maximum dimension of a
stratum appearing in W. If we let rt(p) = H|U(✏/2)⇥I, then rt defines a weak deformation
retract of UW(✏/2) to W, that is, rt(W) ✓W for all t, r0(UW(✏/2)) ✓W and r1 = id. It is
easy to show that this implies that W ,! UW(✏/2) is a homotopy equivalence.

Remark 11.1.27. One could imagine performing these homotopies at separate times by
letting the homotopy parameter in dimension i be a function si(t) = f(t- i) where the
shrinking homotopy in dimension i is performed in the interval (i+ 1/2, i+ 3/4). This
is how it is done in Goresky’s thesis [Gor76]. This makes his homotopy

HG
i (p, t) :=

�
p if p /2 T�(✏)

h-1
� (r�(✏)(p),d�(p)[(1- si(t))f(d�(p)/✏) + si(t)]) if p 2 T�(✏)

easier to visualize. However, the advantage of choosing si(t) = t is that the homotopy is
stratum preserving up until t = 0.

Remark 11.1.28. Of course, for a given stratum X�, away from its frontier the retraction
map r0 coincides with the tubular projection ⇡�.

As the above proposition shows, control data is essential for providing Whitney strat-
ified spaces with good neighborhoods. Not only do they endow Whitney stratified
spaces with the structure of a Thom-Mather stratified space, they allow us to construct
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Goresky’s family of lines to carry out these retractions. These retractions are instrumen-
tal to the cosheaves that we will construct in Lemma 11.1.37 and Theorem 11.2.17. There
is another technical tool that we need that can only be developed in the presence of
control data.

Definition 11.1.29. A stratified vector field ⌘ on (X, {X�}�2P
X

) is a collection of vector
fields {⌘�}�2P

X

with one smooth vector field on each stratum.

When it is meaningful to compare these vector fields, it is remarkable to note that this
collection need not be continuous. Nevertheless, in the presence of control data, the flow
generated by such a discontinuous vector field is continuous.

Definition 11.1.30. A stratified vector field ⌘ on X is said to be controlled by {T�,⇡�,d�}
if the following compatibility conditions are satisfied for any pair of strata X� 6 X⌧:

⌘⌧(d�,⌧(p)) = 0

d(⇡�,⌧)(⌘⌧(p)) = ⌘�(⇡�,⌧(p))

where ever both sides of the equation are defined.

11.1.5 Thom Mappings

Definition 11.1.31. A Thom mapping is a stratified map f : (X,M)! (Y,N) that satisfies
condition af for every pair of strata X⌧ > X�: let xi be a sequence of points in X⌧
converging to a point p 2 X�. Suppose kerd(f|X

⌧

)x
i

✓ Tx
i

M converges to a plane K ✓
TpM, then kerd(f|X

�

)p ✓ K.

In Figure 58, we have drawn an example of a mapping that is not a Thom mapping.7

Other non-examples include the blow-up map discussed in Example 11.1.4. Any map
that is triangulable satisfies Thom’s condition af for that triangulation viewed as a strati-
fication. It has been a long standing conjecture that every smooth Thom mapping is trian-
gulable. Masahiro Shiota appears to have proven this conjecture in the C1 case [Shi00],
but we have chosen not to rely on this conjecture. Instead, we only need the following
proposition of Mather’s (Proposition 11.3 of [Mat12]).

Proposition 11.1.32. Suppose f : X! Y is a Thom mapping and a system of control data
{T } for Y is given. There exists a family of tubular neighborhoods {T 0} for X over {T },
which satisfies the following compatibility conditions:

(a) If X� 6 X⌧, then ⇡ 0� � ⇡ 0⌧ = ⇡ 0� for points in T 0� \ T 0⌧ in M. Furthermore, if f(X�) and
f(X⌧) lie in the same stratum of Y, then d 0� � ⇡ 0⌧ = d 0� where both sides are defined.

7 This example is borrowed from [Lu76].



11.1 stratification theory and tame topology 208

figure 58: Not a Thom Mapping

(b) If Y� is a stratum that contains X�, then

f(⇡ 0�(p)) = ⇡�(f(p))

for all p 2 T 0� \ f-1(T�).

Remark 11.1.33. The first condition is weaker than the usual definition of control data
when the strata are not mapped to the same stratum. Consequently, the above notion of
a system {T 0} of control data over {T } is not the same as two systems of control data.

Just as the notion of control data generalizes to control data over control data, con-
trolled vector fields generalize to controlled vector fields over controlled vector fields.

Definition 11.1.34. Suppose f : X! Y is a Thom mapping and {T 0} is a system of control
data over {T }. If ⌘ = {⌘�} is a controlled vector field on {Y�} controlled by {T }, then there
exists a stratified vector field ⌘ 0 = {⌘ 0�} on {X�} satisfying the following compatibility
conditions:
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(a) For any X� and p 2 X�, we have

(df|X
�

)(⌘ 0�(p)) = ⌘�(f(p))

where Y� is the stratum of Y that contains f(p).

(b) For any X� 6 X⌧, there is a neighborhood N 0� in T 0� such that for p 2 T 0� \ X⌧ we
have

d(⇡ 0�,⌧)(⌘
0
⌧(p)) = ⌘ 0�(⇡

0
�,⌧(p))

and if X� and X⌧ are carried to the same stratum of Y, then we have further the
condition that

⌘ 0⌧(d
0
�,⌧(p)) = 0.

Thus, the notion of a controlled vector field ⌘ 0 over ⌘ is a weaker one than a pair of
controlled vector fields on X and Y that commute with the Thom mapping f.

The following result, proven with help from Mark Goresky, gives a useful criterion
for determining when a stratified map is a Thom mapping, so as to make the above
constructions possible there. It rests on the observation that all the classical examples
of stratified maps f : X ! Y that aren’t Thom maps require considering a pair of strata
Y� < Y⌧ in Y whose codimension is at least two. Combinatorially, this allows us to have
a pair of strata X� < X⌧ in X such that dimX� \ f-1(p) > dimX⌧ \ f-1(xi) even though
dimX� < dimX⌧. In the following lemma we show that if the codomain only has strata
of codimension 1, then the map is a Thom mapping.

Lemma 11.1.35. Suppose f : (X,M) ! (Y,N) is a Whitney stratified map that is C1 on
the ambient manifold M. Let Y 0 = Y� [ Y⌧ be the union of two strata whose difference
in dimension is one. The restricted map f 0 : (X 0,M) ! (Y 0,N) where X 0 := f-1(Y 0) is a
Thom map.

Proof. The proof is local, so we consider the following setup instead: Suppose
f : (X,M) ! (Y, Rk+1) is a Whitney stratified map where Y is the upper half plane
in Rk+1, i.e. Y := {(y1, · · · ,yk+1) |yk+1 > 0}. We assume that the stratification of the map
stratifies Y as Y⌧ := {yk+1 > 0} ⇠= Rk+1 and Y� := {yk+1 = 0} ⇠= Rk. Let X� be a stratum of
X that is mapped to Y� and X⌧ a stratum mapped to Y⌧. Suppose {xi} is a sequence in X⌧
and kerdf|X

⌧

(xi) =: Ki converges to a subspace K1 ✓ TpM where p 2 X�. We want to
show that Kp := kerdf|X

�

(p) ✓ K1. By passing to a subsequence we can further assume
that the tangent planes Tx

i

X⌧ =: Ti converges to T1 ✓ TpM. By Whitney’s condition (a),
TpX� ⇢ T1.

Denote by ⇢Y(y) := ⇡k+1(y1, . . . ,yk+1) = yk+1 the “distance from the stratum” function
on Y. By pre-composing with f, this defines a function ⇢X(x) := ⇢Y(f(x)). Any vector
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v 2 Ti with d⇢X(xi)(v) 6= 0 must also have df|X
⌧

(xi)(v) 6= 0 since the chain rule implies
that d⇢X(xi) = d⇢Y(f(xi)) � df|X

⌧

(xi) and thus v /2 Ki.
Let ⇡� : Rk+1 ! Y� be the projection onto the first k coordinates. The restriction of

⇡� to Y⌧, written ⇡�,⌧, is a submersion. By virtue of ⇡�,⌧ � f|X
⌧

being a submersion, any
vector w 2 T⇡

�

(f(x
i

))Y� has a lift wf(x
i

) 2 Tf(x
i

)Y⌧ so that wf(x
i

) 2 kerd⇢Y(f(xi)), which
in turn has a lift w̃i 2 Ti. Consequently, df|X

⌧

(xi)(w̃i) 6= 0 and thus w̃i /2 Ki. Moreover,
w̃i is orthogonal to r⇢X(xi) since any lift of w is chosen to factor through the kernel of
d⇢Y(f(xi)) = ⇡k+1.

Thus, each Ti can be written as T̃⇡
�

(f(x
i

))Y� � Ki � r⇢X(xi). Since TpX� ⇢ T1 the
isomorphism T1 ⇠= TpX�� (TpX�)? can be further refined as T1 ⇠= T̃f(p)Y��Kp� (TpX�)?.
We have assumed that f is C1 on the ambient manifold M so that the lifts T̃⇡

�

(f(x
i

))Y�
must converge (perhaps after passing again to a subsequence) to T̃f(p)Y�. Additionally,
r⇢X(xi) converges to a subspace of (TpX�)?. Finally, since dimX� < dimX⌧, dimension
constraints force Kp ✓ K1. This proves the lemma.

This lemma is instrumental for our proof of Theorem 11.2.17. On it’s own, it has a
useful corollary.

Corollary 11.1.36. Any stratified map f : (X,M) ! (Y, R) that is C1 on the ambient
manifold is a Thom map.

11.1.6 Stratified Maps to the Real Line

Lemma 11.1.37. Any stratified map f : X! R defines, for each i, a cellular cosheaf.

Proof. The map f : X! R defined above has as fibers the spaces Xr. Because it is stratifi-
able with finitely many strata, we have the following decomposition of the codomain:

(-1, 0) {0}! (0, t1) {t1}! (t1, t2) {t2}! (t2, t3) · · ·

The points ti indicate the radii (the “times”) where the topology of the union of the
balls changes. Since the fiber Xt

i

:= f-1(ti) is a closed union of strata, proposition
11.1.26 implies (after first choosing a system of control data and then regarding X as
Thom-Mather stratified) that we can fix an ✏ > 0 such that the neighborhood Ut

i

(✏) =
[�2X

t

i

T�(✏/2) contains Xt
i

as a weak deformation retract. Since f is proper, we claim
that there exists a point s-i 2 (ti-1, ti) such that Xs-

i

is contained in Ut
i

(✏). Suppose for
contradiction that for all n >> 0 there exists a point xn 2 f-1([ti -

1
n , ti - 1

n+1))\Ut
i

(✏)c.
If this is possible, then {xn} defines a sequence with no convergent subsequence, which
contradicts the fact that f-1([ti-1, ti]) is compact. Consequently, there exists an n such
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that if s-i := ti -
1
n , then f-1([s-i , ti]) ✓ Ut

i

(✏). The composition of the inclusion followed
by the retraction

Ut
i

(✏)

Xs-
i

-
�

;;

Xt
i

1 Q

⇠=
bb

allows us to define maps between the homology of the typical fiber over (ti-1, ti) to the
homology of the fiber Xt

i

.
Hi(Xs-

i

;k)! Hi(Xt
i

;k)

An analogous argument allows us to find an s+i 2 (ti, ti+1) such that Xs+
i

⇢ Ut
i

(✏). We
can construct a vector field on (ti-1, ti) that flows from the point s+i-1 to s-i . Lifting
this vector field to a controlled one over this one, allows us to flow the fiber over s+i-1
to the fiber over s-i , thus realizing the homeomorphisms Xs+

i-1

⇠= Xs-
i

explicitly. For
convenience, we drop the decorations and choose any point si 2 (ti-1, ti) to get our
modified version of the persistence module introduced in Section 8.1.

· · · Hi(Xs
i

;k)! Hi(Xt
i

;k) Hi(Xs
i+1

;k)! Hi(Xt
i+1

) · · ·

One should note that this diagram is contravariant with respect to the poset indexing
the stratification of R, thus we have constructed geometrically a cellular cosheaf.

Corollary 11.1.38. The semialgebraic function f : X ! R in example 11.1.17 defines, for
each i, a cellular cosheaf.

Although the above construction may appear convoluted, it is geometrically natural.
Instead of using the order on R to get a diagram of vector spaces and maps, we have a
diagram indexed by the pieces of a stratification of R. This new diagram is specifically
adapted to the topological changes in the family {Xr}.

In multi-dimensional persistence we imagine the need for more than one parameter
to distinguish features in a point cloud. The traditional story of persistence no longer
applies since Rn for n > 2 has no natural (partial) order. In contrast, every situation
where multi-dimensional persistence can be treated as a stratified map (which is effec-
tively always), the partial order of the pieces in a stratification presents itself as a most
natural candidate.

However, the geometry of stratified spaces in more than one dimension is subtle and a
poset will not always suffice. In Section 11.2, we will introduce a small category (usually
equivalent to a finite one) that allows us to track persistent features in a more careful way.
The proof of Lemma 11.1.37 contains the essential ideas of this more general picture. By
considering certain definable paths in the parameter space, and analyzing their inverse
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figure 59: Two Entrance Paths and a Homotopy Between Them

images, which will be definable, we can try to reduce a multi-dimensional problem to a
one-dimensional one. This is the high-level outline of how Theorem 11.2.17 associates a
constructible cosheaf to a general definable map.

11.2 representations of the entrance path category

Given a Whitney (or Thom-Mather) stratified space, the entrance path category looks
very much like the fundamental groupoid. It has objects that are points and morphisms
that are paths. However, the paths and homotopies must respect the stratification. A
path may wind around in a given stratum and it may enter deeper levels of the stratifi-
cation, but upon doing so, it may never return to its higher level.

Definition 11.2.1. Let (X, {X�}�2P
X

) be a Whitney (or Thom-Mather) stratified space. We
define the entrance path category Entr(X, {X�}) to be the category whose objects are
points of X and whose morphisms are homotopy classes of entrance paths. An entrance
path is a path �(t) whose ambient dimension (the pure dimension of the containing stra-
tum) is non-increasing with t. Moreover we require the homotopies h(s, t) to be entrance
paths for every fixed s. We write Entr(X) when a given stratification is understood.

Opposite to the entrance path category is the exit path category, written Exit(X) whose
objects are the same, but whose paths ascend into higher dimensional strata.

Remark 11.2.2 (“Tame” Homotopies). David Treumann’s thesis [Tre09], which was writ-
ten under MacPherson’s direction, contains one of the first published accounts of the exit
path category. However, he added an additional hypothesis that the homotopies should
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be “tame,” which he defines by saying that h : [0, 1]2 ! X should admit a triangulation of
[0, 1]2 such that the interior of each simplex in the triangulation is contained in some stra-
tum of X. Jon Woolf [Woo09] uses a version of the exit and entrance path category based
on Quinn’s theory of homotopically stratified spaces and does not require Treumann’s
tameness assumption. Homotopically stratified spaces are more general than Whitney or
Thom-Mather stratified spaces, so we may invoke some of Woolf’s results. Nevertheless,
Treumann’s modification foreshadows our own.

Definition 11.2.3 (Definable Entrance Path Category). For a fixed analytic-geometric cat-
egory G we can consider the definable entrance path category to have the same objects
as before, but whose morphisms are definable entrance paths, where identify entrance
paths related by definable homotopies h : I2 ! X. There should be a triangulation of I2,
so that the image of every open cell is contained in some stratum of X. This category
will be written EntrG(X, {X�}). Dually, we have a definable exit path category ExitG(X).
Remark 11.2.4. We will not need to use the definable entrance path category until Theo-
rem 11.2.17, so one may temporarily ignore this restrictive definition.

From the perspective of a computer, the entrance path category definition is entirely
too unwieldy to be useful. Storing the points of any space we are accustomed to thinking
about (circles, tori, Klein bottles, etc.) is simply too much data to consider. Fortunately,
these categories are equivalent to much simpler subcategories by choosing a single point
from each connected component in the stratification and passing to a skeletal subcate-
gory.

Example 11.2.5 (Entrance Path Category for S1). Now consider the circle S1 stratified as
a single pure stratum. The argument above shows that we can view the entrance path
category of S1 as equivalent to the fundamental group ⇡1(S

1, x0). This is a category with
a single object ? whose Hom-set corresponds to a loop for each homotopy class of path,
i.e. Hom(?, ?) ⇠= Z.

Example 11.2.6 (Manifolds). More generally, if the space X is a manifold, stratified as a
single pure stratum, then the entrance path category is equivalent to the fundamental
group.

If we believe MacPherson’s characterization of constructible (co)sheaves, then we can
reach our much sought after explanation of why cellular sheaves and cosheaves are
actually sheaves and cosheaves. Part of the explanation rests on the following character-
ization of the entrance path category for cell complexes.
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Proposition 11.2.7 (Entrance Path Category for Cell Complexes). If (X, {X�}�2P
X

) is strat-
ified as a cell complex, then each stratum is contractible and there is only one homotopy
class of entrance paths between any two incident cells. As such

Entr(X) ⇠= Cell(X)op = Pop
X and Exit(X) ⇠= Cell(X) = PX.

To prove this proposition, we need a better understanding of the entrance path cate-
gory. To do so, we pick out a distinguished class of entrance paths.

11.2.1 Homotopy Links

Definition 11.2.8 (Homotopy Link). Suppose X is a decomposed space and X� 6 X⌧ are
two incident pieces. The homotopy link of X� in X⌧ is defined to be the space of paths
� : I ! X� [ X⌧ such that �([0, 1)) ⇢ X⌧ and �(1) 2 X�, i.e. it is the space of paths that
enter X� at the last possible moment.

We now adapt a proof of Jon Woolf’s ([Woo09], Lemma 3.2) to our situation.

Lemma 11.2.9. Let (X, {X�}) be a Thom-Mather stratified space. Any entrance path is
homotopic through entrance paths to an element of the homotopy link.

Proof. Suppose � : [0, 1] ! X is an entrance path. By compactness, it can only intersect
finitely many pieces in the stratification of X. We write Xj to denote the union of all
dimension j pieces. For any i 6 j, we have that Xi 6 Xj.

We claim that one can show that every entrance path � starting in a stratum Xk and
ending in a stratum Xi that intersects potentially every stratum in between

Xk > Xk-1 > · · · > Xi

is homotopic to a path � 0(t) which sends every t 2 [0, 1) to Xk and then enters Xi at the
last possible moment.

To define the homotopy, one focuses on pulling the path off the last stratum Xj that
� enters before entering Xi, i.e. there is a partition 0 < t1 < · · · < tn < 1 of [0, 1] such
that �(0) 2 Xk, �([tn, 1]) ✓ Xi and �([tn-1, tn)) ✓ Xj. First, we show that we can pull the
path off Xi into Xj so that it enters only at t = 1. The schematic uses the fundamental
observation that stratified spaces can be treated locally as a system of fiber bundles.

Pick a point xj := �(tn - ✏) 2 Xj and consider its homeomorphic image (which we call
x 0j) in the fiber over �(tn). There is a homotopy from the path � relative the end points
xj = �(tn - ✏) and �(tn) to the piece-wise path that is constant in the fiber, connects xj
to x 0j , and then heads straight to �(tn) while staying in the fiber over that point. By the
path lifting property for fiber bundles, we can consider a lift of �([tn, 1]) starting with
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figure 60: Modifying a Homotopy to Stay Inside an Open Set

x 0j which ends at x 00j in the fiber over �(1). Repeating the same argument, we can then
consider a path that heads from x 00j to �(1) while staying in the fiber. Now the path
enters the stratum Xi at the last possible moment.

Repeating this argument and using the conical structure of the fiber, allows us to lift
the path out of the Xj stratum and into higher ones.

This result allows us to take representative entrance paths that are easy to understand.
Every element of the homotopy link is an entrance path, but not every entrance path
is an element of the homotopy link. Moreover, it is not clear that two paths that are
homotopic as entrance paths are homotopic as entrance paths (after we have moved
them into the link as in the above proof). Fortunately, David Miller has recently shown
this is the case [Mil06]. At a high level, this provides a proof of Proposition 11.2.7, which
can also be seen using easier methods.

Proof of 11.2.7. Since the pieces in a cell structure on X are all contractible, each cell X�
has a single path component in its homotopy link in X⌧. Thus the skeleton of the entrance
path category for a cell complex is

Entr(X) ⇠= Xop,

which was wanted.

11.2.2 Van Kampen Theorem for Entrance Paths

If we can show that the entrance path category can be built up locally, then we can prove
that representations of this category define cosheaves. The ability to build up locally the
entrance path category is the van Kampen theorem adapted to stratified spaces. Osten-
sibly, David Treumann’s published version of his thesis [Tre09] proves the van Kampen
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theorem for the exit path 2-category, but the elegant inductive argument in proposition
5.9 appears to have an error.8 Jacob Lurie has a proof for the 1-category case [Lur09b].
Jon Woolf has outlined another argument [Woo14] based on his classification of Set-
valued representations of the entrance path category as branched covers. The following
proof, joint with Dave Lipsky, is more direct and algorithmic, but less elegant in many
respects.

The main difficulty in proving the van Kampen theorem is that given a cover, a ho-
motopy of entrance paths restricts to a free homotopy between entrance paths and not
a homotopy relative endpoints; see Figure 60. In contrast to the fundamental groupoid,
we cannot freely add paths to make this homotopy respect endpoints, the entrance path
property must be preserved and this significantly complicates the proof. We borrow
Treumann’s idea of using a triangulation T of I2 such that h : I2 ! X sends open cells
of T to strata of X. We then, after sufficient refinement, define a homeomorphism of I2

that allows us to treat the triangulation as a piecewise linear one. For a piecewise linear
triangulation, we outline an explicit algorithm for replacing the homotopy h with a com-
position of homotopies preserving endpoints, each of which is supported on a triangle
in I2. Let us state our desired version of the van Kampen theorem and give the first step
of the proof.

Theorem 11.2.10 (Van Kampen Theorem for Entrance Paths). If X is a Whitney stratified
space and U = {Ui} is a cover, then

Entr(X) ⇠= lim�!
I2N(U)

Entr(UI).

Each open set is given the induced stratification from the whole space. We assume that
every homotopy h : I2 ! X admits a triangulation of the domain so that for each open
cell in the triangulation there is a stratum of X that contains its image. Moreover, the
same result holds for the definable entrance path category.

Proof. The colimit is an ordinary colimit in the category of all categories. The diagram
that sends each I 2 N(U) to Entr(UI) we will call V . We already know that the inclusions
of the open sets UI ,! X induce functors �I : Entr(UI)! Entr(X) and that these define a
cocone � : V ) Entr(X), i.e. a natural transformation from V to the constant diagram on
N(U) with value Entr(X). Now suppose � 0 : V ) C is another cocone. We need to check
that there exists a unique map u : Entr(X)! C that makes all the functors commute, i.e.
u ��I = � 0I.

8 The argument inducts on the number of triangles in a triangulation of I2. The statement that the closure
of the complement of a single triangle is homeomorphic to I2 is not true if, for example, the triangle has
two vertices on one side of the square and the third on another side.



11.2 representations of the entrance path category 217

On objects, u(x) := � 0i(x) for whatever open set Ui contains x. The choice doesn’t
matter since if Uj also contains x, then the functor defined on the intersection causes
�i � �ij(x) = �j � �ij(x). Now we must define u(�) for � an entrance path in X. By
compactness, we can pass to a finite subcover of {Ui} to cover the path �. We can break
up � into shorter paths �i

1

, . . . ,�i
n

, each of which lie in some element of the cover. We
define u(�) := � 0i

n

(�i
n

) � · · · � � 0i
1

(�i
1

). We must show that this definition is invariant
under homotopy to complete the proof. This is accomplished by Lemma 11.2.13 together
with Proposition 11.2.14.

Definition 11.2.11. Call a homotopy U-elementary if there is an interval [a,b] ⇢ I such
that h(s, t) is independent of s so long as t /2 [a,b] and the image of I⇥ [a,b] under h is
contained in U. See Figure 60 for an illustrative cartoon.

Remark 11.2.12. We will use a slightly strange way of orienting the unit square I2 =
[0, 1]⇥ [0, 1] 3 (s, t). The “top edge” is the edge where t = 0 and the “bottom edge”
is the edge t = 1. We will use this language because an entrance path enters “deeper”
levels of a stratification.

Lemma 11.2.13. Let X be a Whitney stratified space along with a cover U and let ↵(t) and
�(t) be entrance paths with the same start and end points. Let h : I2 ! X be a homotopy
(relative endpoints) through entrance paths connecting ↵(t) = h(0, t) to �(t) = h(1, t). If
I2 admits a piecewise-linear triangulation T such that every open cell in T is mapped to a
stratum of X, then we may define a sequence of new homotopies h1, . . . ,hn : I2 ! X, each
of which are elementary for some element of the cover, so that the composite connects
↵ ' �. Informally speaking, each homotopy hi will be supported on a single triangle in
the barycentric subdivision of the triangulation T .

Proof. Since the image of I2 is compact, a finite subcover of U will do. After sufficient
refinement, we can assume that each triangle in T is contained in some element of the
subcover. By taking the barycentric subdivision T 0, we can refer to the vertices of any
triangle in T via barycentric labels v, e, f depending on whether the vertex is at the
barycenter of a vertex, edge or face in the original triangulation. Since each open cell
in T is mapped to a stratum of X, the triangles in T 0 satisfy the following fundamental
property: h(�f), where �f := [v, e, f] - [v, e], is contained in some stratum Xf; h(�e),
where [v, e]- v = �e, is contained in Xe; h(v) is contained in Xv and Xf > Xe > Xv. We
will refer to the dimension of these containing strata as the “dimension” of f, v and e,
respectively.

By the fundamental property of triangles in T 0 we know, for example, that the path
parameterized by going from f to e to v along the boundary of a triangle is a valid
entrance path and this is homotopic through entrance paths to one that goes from f
directly to v. This is the prototypical “move” that we will use to define a given hi in our
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new homotopy between ↵ to �. By reparameterizing the triangle, this move defines an
elementary homotopy of entrance paths.

As a preparatory step we replace the entrance path ↵(t) := h(0, t) with the path that
starts at (s, t) = (1, 0) and goes along the top edge of the square to (0, 0), then to (0, 1)
and finally to (1, 1). Because the homotopy is constant along the top and bottom edges,
this only affects the parameterization of the path, but now our modified path and �(t) :=
h(1, t) share the same endpoints in I2. We will now refer to our intermediate paths � by
a sequences of vertices in T 0, written w1 · · ·wn, which taken two at a time define edges
�i = wawb labeled by a pair of letters fv or vf, fe or ef, ev or ve. Observe that if the
image of vf under h is a valid entrance path, then this implies that dim v = dim e = dim f
for the triangle containing that particular edge vifi.

If an entrance path � ever has a vertex appear twice in its list, then this indicates a
loop that must be contained in the same stratum. By virtue of the fact that I2 is simply
connected, the portion of the path between the repeated vertices can be homotopically
reduced to the constant path via the argument used to prove the van Kampen theorem
for the fundamental groupoid. We will avail ourselves of this operation, which we call
the fundamental groupoid sweep F. For example, if � contains · · · eiviei · · · in its list of
visited vertices, then F(�) will replace the portion eiviei with just ei. Of course, F2 = F.

We retain the (s, t) coordinates to determine valid moves in our homotopy. We do this
because, by assumption, for all s, h(s, t) is an entrance path in t and thus the dimension
decreases in that direction. Now we can describe our algorithm:

If F(�) = � and s(wi) = s(wj) for all i 6= j, then we are done. Otherwise, apply F and
starting with �1, ask of �i if there is a triangle to the left (with respect to the induced
orientation of following the path) and apply one of following rules:

(1a) If �i = vf or fv, then replace �i with � 0i := vef or fev, where e belongs to the
triangle to the left.

(1b) If �i = ev and s(e) > s(v) or if �i = ve and s(v) > s(e), then � 0i := efv or � 0i := vfe
where f belongs to the triangle to the left.

(1c) If �i = fe and s(f) 6 s(v) 6 s(e) or if �i = ef and s(e) 6 s(v) 6 s(f) where v
belongs to the triangle to the left, then � 0i := fve or � 0i := evf.

If none of the above apply, consider adjacent paths �i ⇤ �i+1 two at a time and ask if the
following rule is applicable:

(2) If �i ⇤ �i+1 = fev or vef where the interior of the triangle is kept to the left, then
(�i ⇤ �i+1)

0 = fv or vf.
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figure 61: Forcing Move (1c) to Apply

After each application of a rule, one must check whether F(�) = � and s(wi) = s(wj)
and repeat as many times as necessary. The algorithm must terminate by virtue of the
fact that each step reduces the number of triangles to the left.

Observe that the only way for a path �i not to have a triangle to its left is if it lies on
the boundary of I2 and it is following the boundary clockwise. If �i does not belong to
the s = 1 edge, then that contradicts the assumption that F(�) = � as the total path must
return to the point (s, t) = (1, 1). If the edge does lie on s = 1, then part of the desired
homotopy has been achieved and it need not be moved. If there are no triangles to the
left and F(�) = �, then the algorithm has finished.

The rationale for rule (1b) is that any point p on the edge ev determines an entrance
path h(s(p), t), which drops into the interior �f of the triangle to the left, thus bounding
the dimension of f by the dimension of e. The rule (1c) uses similar reasoning. If
s(f) 6 s(v) 6 s(e) where v is the triangle to the left, then the entrance path determined
by v h(s(v), t) flows into �f or �e thus bounding the dimension of e by the dimension of
v. Let us now prove the correctness of the algorithm.

Suppose � has a vf of fv in sequence. Since a f vertex cannot belong to the boundary
of I2, this implies that there is a triangle to the left and that rule (1a) can be applied.
Thus, to show that at least one move can be applied up until the algorithm finishes, we
assume that no vf’s or fv’s appear in �. Suppose � consists of only e’s and v’s. Since
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the start of � has s(v) = 1, having s non-decreasing would imply that � is contained in
s = 1 and the algorithm would be finished. Otherwise there is a pair such that (1b) can
be applied. Now assume that our path has e’s, v’s and f’s, with no fv/vf pairs and such
that for all ev/ve pairs, s is increasing.

Because the value of s must go from 1 back to 1, if s is not constant along �, then there
must be at least one s decreasing to increasing turning point. Because � is piecewise
linear, by turning point we mean the shortest adjacent collection of edges �i ⇤ · · · ⇤ �k
where the s value goes from strictly decreasing to strictly increasing, i.e. there is an edge
along which s is strictly decreasing, then potentially several edges where s is constant
and finally an edge which increases in s. To determine the “handedness” of these turning
points we must further specify the t behavior. If the turning point consists of only two
edges, then we can ask if the difference in t of the first and last vertex is positive or
negative. If the turning point has at least one constant s value edge, then we can use the
difference in t along the edge to determine if the turning point is t positive or t negative.

Suppose we have a t negative s decreasing-to-increasing turning point. If the minimal
s value is obtained on this turning point, then since t must go from 0 to 1, we can
conclude that the path must intersect itself at some point, contradicting the assumption
that F(�) = �. To avoid self-intersection, there must be at least one t positive turning
point. Since there are no decreasing ev/ve pairs, the decreasing edge must be either ef
or fe. If the next term is a v, then either rule (1a) or (2) would have to apply, respectively.
Thus, we can conclude that the next term is either an f or an e. Inducting on the length
of the s constant portion of the turning point and using the fact that f, e and v cannot
be collinear, we can show so long as rules (1a), (1b) or (2) cannot be applied, that the
s increasing edge has to be an fe/ef edge. Consequently the last two edges in such a
turning point is either fef or efe.

Now we visit the last t positive s decreasing-to-increasing turning point. Since the
reasoning is so similar, assume that the last two edges are efe. We aim to show that if
no other rules are applicable, then the rule (1c) must be applicable for some ef/fe edge.
Let us refer to the vertices in the original triangulation T containing these barycenters
as v1, v2 and v3, whose s coordinates are s1, s2 and s3 respectively. Since all the vertices
cannot be collinear, we let s2 have the largest s value. The vertex f is the centroid of
{v1, v2, v3} ⇢ I2, the first e = e12 is the centroid of {v1, v2} and the next e = e23 is the
centroid of {v2, v3}. By assumption 1/3(s1 + s2 + s3) = s(f) < s(e23) = 1/2(s2 + s3), thus
if the next vertex visited is v3, then we can apply rule (1b) to e23v3. If the next vertex
visited is v2, then we can apply rule (2). Thus, we must assume that the next vertex is
f 0 = 1/3(v2 + v3 + v4). Now we reason on e23f

0. The next vertex cannot be a v, otherwise
(1a) could be applied. If the next edge visited is e34, then there are two possibilities.
Either s(e34) < s(f 0), which would contradict the fact that we are at the last t positive
turning point, or s(f 0) 6 s(e34), which would imply that 2s2 6 s3 + s4, but this would
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imply that s2 = s(v2) 6 s(f 0) and consequently rule (1c) would apply. Thus, assuming
s(e34) < s(f 0), we must remain in the link of v2 and proceed to e24. Repeating inductively,
and using the fact that there are only finitely many triangles, there must be a point where
rule (1c) is applicable; see Figure 61. This completes the proof.

Now we must select out a class of triangulations of the unit square I2 that can be
deformed in an entrance-path preserving way to a PL triangulation.

Proposition 11.2.14. Suppose that a (definable) triangulation ' : |K| ! I2 by a finite
simplicial complex is C2 when restricted to the edges of |K|. There is a (definable) home-
omorphism g of I2 so that after suitable refinement, the triangulation is piecewise-linear.

Proof. The strategy of the proof is to add additional vertices {wi} to the image '(e) of
each edge in I2 so that the line segment connecting any two adjacent vertices w0,w1 is
to one side of the curve '(e) between s(w0) and s(w1). We will then locally scale the t
value in such a way as to push that part of '(e) to the line segment.

To add in these vertices in a principled way, we first consider the critical set of the
s value of '(e) for every edge e in |K|. We remove the entire critical set from e. If
the critical set contains an interval, then we know that portion of the edge is already
linear and need not consider it. Now we use the implicit function theorem to write the
remainder of the edge '(e)- {ds|'(e) = 0} as a function of s. For each of these functions
we find the critical set of its first derivative (“inflection points”) and remove these as well.
What is remaining of '(e) is a collection of open concave and convex arcs, each of which
have boundary points wi,wi+1 in the various critical sets we have removed. Write `i(s)
for the equation of the t coordinate of the line connecting wi to wi+1, i.e. the graph of
the line is (s, `i(s)). We also write the portion of '(e) between wi and wi+1 as 'i(s).

Possibly after further removal of points, we assume that each arc 'i(s) has a tubular
neighborhood Ti that contains `i(s) and each of these neighborhoods are pairwise dis-
joint. We are now going to define a homeomorphism that is the identity outside of Ti.
To do so we need one more pair of functions.

µ±(x) = x if |x| > 1

µ±(x) = 2x± 1 if -1 6 x 6 -1
2

µ±(x) =
2
3x±

1
3 if -1

2 6 1

Now we can define a homeomorphism gi on Ti using + if the function 'i(s) is concave
and - if the function 'i(s) is convex.

gi(s, t) := (s, 2 · |'i(s)- `i(s)| · µ±(
t- `i(s)

2|'i(s)- `i(s)|
) + `i(s))
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Since the domains of each Ti are disjoint we can define the homeomorphism g to be gi
when in Ti and the identity otherwise. This straightens each of the 'i(s). The portions
of '(e) removed are already piecewise-linear. This makes each g �'(�̄) into a piecewise-
linear polyhedron, the interior of which is mapped via h to a single stratum of X. By
adding edges and vertices, we can refine the stratification of g �'(�̄) to be a piece-wise
linear triangulation.

11.2.3 The Equivalence

We will break our proof of MacPherson’s characterization into two parts. The first shows
that any representation defines a constructible cosheaf. The second shows that any con-
structible cosheaf defines a representation of the entrance path category.

Theorem 11.2.15 (Representations are Cosheaves). Let X be a Thom-Mather stratified
space. Any representation of the entrance path category

Entr(X, {X↵})! Vect
defines a constructible cosheaf.

Proof. To produce a cosheaf from a representation bF : Entr(X) ! Vect we take colimits
over the restriction of bF to the entrance path category of U (with its induced stratifica-
tion):

bF(U) := lim�!Entr(U)

bF|U

This is clearly a pre-cosheaf since if U ,! V , the colimit over bF|V defines by restriction a
cocone over bF|U and thus a unique map bF(U) ! bF(V). We can describe more explicitly
this colimit as follows:

Given a point x 2 X� in a stratum of dimension i, there is a basis of conical neigh-
borhoods Ux

⇠= Ri ⇥ C(L) where L is the stratified fiber of the retraction map ⇡� and
C(L) is its open cone. For such a neighborhood, x is the terminal object in Entr(Ux),
thus the colimit returns the value of bF(x). Moreover, this shows that the costalks of the
pre-cosheaf defined stabilize for small contractible sets containing x.

To show this is actually a cosheaf we use the version of the van Kampen theorem
adapted to the entrance path category just proved in Theorem 11.2.10:

lim�!
I2N(U)

Entr(UI) ⇠= Entr(X)
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As a consequence of colimits commuting with colimits we get that for a representation
of the entrance path category bF

lim�!
I2N(U)

bF(UI) := lim�!
I2N(U)

lim�!Entr(U
I

)

bF|U
I

⇠= lim�!Entr(U
I

)

lim�!
I2N(U)

bF|U
I

⇠= lim�!Entr(U)

bF|U.

This establishes the cosheaf axiom.

Theorem 11.2.16 (Representations of the Entrance Path Category). Every cosheaf bF with
finite-dimensional costalks that is constructible with respect to a Thom-Mather stratifica-
tion of X determines a representation of the entrance path category.

Entr(X, {X↵})! vect
Proof. If X is a Thom-Mather stratified space, then we know that every point x 2 X� in a
stratum of dimension i has a neighborhood Ux

⇠= Ri ⇥C(L), where L is the fiber of ⇡�,
and C(L) is the open cone. Now suppose bF is a constructible cosheaf, which we assume
has finite-dimensional costalks. We claim that for Ux suitably small we can show that

bFx ⇠= bF(Ux).

This is not so easy to see and a proof would require substantial more development of
cosheaf theory. Heuristically, if the value of bF on a sequence of conical neighborhoods
never stabilized then this would contradict the constancy of the cosheaf on sets of the
form Ux\X⌧. For a rigorous proof, one dualizes a constructible cosheaf to a constructible
sheaf by post-composing with Homvect(-,k), which is an equivalence, and we can apply
the proof for constructible sheaves found on p. 84 of [GM83].

Consequently, if y 2 Ux \X⌧ is a point in a nearby stratum, then there is an analogous
neighborhood Uy contained in Ux. Repeating the same argument, we can then use the
maps present in a cosheaf to define a map from the costalk at y to the costalk at x:

bFx
⇠= // bF(Ux) bF(Uy)oo bFy

⇠=oo

Recall that the restriction of a constructible cosheaf to any stratum defines a locally
constant cosheaf. For arbitrary points y 0 in the stratum X⌧ we can consider a path y 0  y
and use Theorem 3.2.6 to define a map from bFy 0 to bFy. Postcomposing with the above
map defines the map bFy 0 ! bFx. This explains why constructible cosheaves map naturally
define ways of specializing a costalk over one stratum to a costalk in its frontier.

To show homotopy invariance, we appeal to the van Kampen Theorem 11.2.10 to re-
duce the argument to elementary homotopies of a particular form. Assume ↵(t) goes
from z 2 X� directly to x 2 X� and that �(t) goes from z to y and then x. Since restric-
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tion to any stratum defines a locally constant cosheaf, we can appeal to the homotopy
invariance of Theorem 3.2.6 to position these paths and points to be inside Ux and so
that Ux � Uy � Uz. By choosing a similar set of isomorphisms, we get two commuta-
tive diagrams, which followed along the top edge corresponds to the action of ↵(t) and
followed along the bottom edges corresponds to �(t).

bF(Uz) //

##

bF(Ux)

bF(Uy)

;;
bFz //

��

bFy

bFx

@@

11.2.4 Representations from Stratified Maps

We want to show that stratified maps induce representations of the entrance path cate-
gory, which, by the first part of our equivalence, defines a constructible cosheaf.

Theorem 11.2.17 (Cosheaves from Stratified Maps). Fix an analytic-geometric category
G. If Y is a closed set in G(N) and f : (Y,N)! (X,M) is a C1 proper definable map, then
for each i, the assignment

x 2 X Hi(f
-1(x);k)

defines a representation of the definable entrance path category of X, where the stratifi-
cation is gotten by the stratification induced by f.

Proof. Let � : I ! X be a definable map that satisfies the entrance path condition, i.e. as
t increases the dimension of the ambient stratum is non-increasing. Thus �(0) is in a
stratum of dimension greater than or equal to �(1). By Lemma 11.1.15, we know that
the pullback Y� := I⇥X Y is definable, as is the pullback of f along �, written �⇤f. Since
definable sets can be Whitney stratified, Y� admits a system of control data, and may be
regarded as a Thom-Mather stratified space.

The argument from Lemma 11.1.37 provides us with the prototype for getting a di-
agram of spaces for every path. We will repeat it here for convenience and make any
necessary modifications. By definable triviality (4.11 of [vdDM96]), there exists a finite
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partition of [0, 1] such that over each interval the inverse image is homeomorphic to the
product:

f-1((ti, ti+1))
⇠= //

f ''

F⇥ (ti, ti+1)

ww
(ti, ti+1)

By properness we can, for any fixed ✏ > 0, find an s+i such that f-1([ti, s+i ]) is contained
in Ui(✏) := [T�(✏/2) for Y� ✓ f-1(ti) := Yi. The retraction we constructed in Proposition
11.1.26 gives a retraction map r+i := H(p, 0) from Ui(✏) ! Yi. This allows us to define a
map on fibers

f-1(s+i ) ,! Ui(✏)! Yi.

Applying some homology functor Hn(-;k) defines the representation locally on the
path. Of course, we must show that this representation is independent of the point si
taken. If s+

0
i 2 [ti, s+i ] is another point, then the composition of the trivialization with the

retraction witnesses the homotopy between these two choices.

F⇥ [s+
0

i , s+i ] ⇠= f-1([s+
0

i , s+i ]) ,! Ui(✏)! Yi

Similarly, one can find a point s-i+1 so that it’s fiber is contained in Ui+1(✏) and the
retraction r-i+1 defines a map from that fiber to the fiber Yi+1 = f-1(ti+1). By Thom’s
first isotopy lemma there is a homeomorphism 'i+1,i taking the fiber over s+i to the
fiber over s-i+1. This homeomorphism is gotten by constructing a vector field that flows
from s+i to s-i+1 and lifting it to a controlled vector field on f-1((ti, ti+1)) via Proposition
9.1 of [Mat12]. Finally, one must observe that the filtration of X by strata of a given
dimension or less, the restriction of � to the half-open interval [ti, ti+1) is contained
inside a single stratum of X and thus the retraction r+i induces a homotopy equivalence
between the fiber over s+i and the fiber over ti. Applying our homology functor to the
following composition defines the total action associated to this path:

· · · (ri+1)
-
⇤ � ('i+1,i)⇤ � (r+i )

-1
⇤ · · ·

It remains to be seen that this map is invariant under definable homotopies of entrance
paths. Suppose h : I⇥ I! X is a definable homotopy. Again, the pullback Yh := I2 ⇥X Y
is definable, as is the map h⇤f, and both can be stratified. Thus, we have reduced
everything to considering a stratified map to the square I2. By the van Kampen Theorem
11.2.10, it suffices to check homotopy invariance on an elementary homotopy, such as
the one depicted in Figure 59. Let us assume that h is a homotopy between an entrance
path ↵(t) = h(0, t), which goes from a stratum X� and enters a stratum X� at the last
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b!

c!

b’!

a!

d!

c’!

d’!

a’!

y’!y!

x’!
x!

figure 62: Argument for Homotopy Invariance

possible moment t = 1, and an entrance path �(t) = h(1, t), which enters X⌧ at t =
1/2 and then goes to X� at t = 1. Moreover, we assume that h takes the complement
of {t = 1} [ {(1, t) | t > 1/2} to the stratum X�. This guarantees that the fibers over
x, x 0,y,y 0,a,a 0,b,b 0, c 0 and d 0 in Figure 62 can all be identified.

Let T be a system of control data for Yh, obtained in a specific way. By restricting to
the strata over s = 0 and s = 1 respectively, we get control data for Ys=0 and Ys=1, both
of which are inside I2 ⇥X Y ⇢ R2 ⇥N. The spaces Ys=0 and Ys=1 can be identified with
the inclusions of Y↵ or Y�, which are contained in R⇥N. The manner in which Mather
constructs control data in Proposition 7.1 of [Mat12] can be used to extend the control
data for Y↵ and Y� to control data for Ys=0 and Ys=1 inside R2 ⇥N respectively. This is
how we obtain those tubular neighborhoods in {T } and the rest can be constructed to be
compatible with those. This allows us to use the control data T to meaningfully compare
the construction above for ↵(t) and �(t).
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We can describe the maps associated to ↵(t) and �(t) as follows: By properness, we
assume the fiber over x is contained in a regular neighborhood, which retracts via rx to
the fiber over (0, 0). There is a homeomorphism 'y,x from the fiber over x to the fiber
over y. Finally, we can assume that the fiber over y retracts via ry to the fiber over (0, 1).
Thus the action associated to ↵(t) is the map

(ry)⇤ � ('y,x)⇤ � (rx)-1
⇤ : Hn(Y(0,0))! Hn(Y(0,1))

where we have implicitly pre-composed rx with the inclusion of the fiber.

For �(t), the action is similar:

(rd)⇤ � ('d,c)⇤ � (rc)-1
⇤ � (rb)⇤ � ('b,a)⇤ � (ra)-1

⇤ : Hn(Y(1,0))! Hn(Y(1,1/2))! Hn(Y(1,1))

The strategy of the proof is to pick a path �(t) that interpolates ↵(t) and �(t) and
show that the associated map on homology agrees with both ↵(t) and �(t). This path
is indicated by the dotted-and-dashed line passing through a 0,b 0, c 0 and d 0 in Figure 62.
The representation associated to �(t) is

(r1)⇤ � ('d 0,c 0)⇤ � (ic 0)-1
⇤ � (ib 0)⇤ � ('b 0,a 0)⇤ � (r0)-1

⇤ .

Here the maps ib 0 and ic 0 denote the inclusion of Yb 0 and Yc 0 into the inverse image
of the interval [b 0, c 0]. The action on homology of (ic 0)

-1
⇤ � (ib 0)⇤ agrees with an analo-

gously constructed homeomorphism 'c 0,b 0 , but we will find it easier to equate the map
associated to �(t) and �(t) as written above.

Because the control data {T } extends the control data for Y↵ and Y�, the retraction
map ra can be taken to be the restriction of a retraction map r0 : UY(1,0)(✏) ! Y(1,0)
constructed in Proposition 11.1.26. This in turn can be taken to be the restriction of
the tubular projections used to define a retraction map rs=1 : Us=1(✏) ! Ys=1. The
commutation relations for control data allow us to imagine first taking the fiber Ya 0 over
a 0 and retracting to the strata over the edge e0 := {(1, t) | 0 < t < 1/2}, and then retracting
to the fiber over (1, 0). This allows us to factor r0 as

r0 = ra � re
0

,

but the image of Ya 0 under re
0

may not be contained in Ya or any single fiber. This would
be true if, for example, the control data defining the retraction to Ye

0

satisfied

⇡e
0

(f(p)) = f(⇡�(p))
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for each stratum Y� that f carried to e0, but in general it does not. This is what ne-
cessitates the use of the Thom properties given by Lemma 11.1.35 and property (b) of
Proposition 11.1.32.

By Lemma 11.1.35, we know that restricting the codomain to the complement of the
vertices, the mapping h⇤f is a Thom mapping. Consequently, if we pick a tubular neigh-
borhood Te

0

for the edge e0 := {(1, t) | 0 < t < 1/2}, there exists a system of control data
{T 0} over Te

0

and the interior of I2 by Proposition 11.1.32. If we restrict to those tubular
neighborhoods coming from strata in Ye

0

, then property (a) of Proposition 11.1.32 im-
plies that this restricted collection of tubular neighborhoods defines actual control data
for Ye

0

, which we call {T 0}Y
e

0

. A priori, the analogous restriction of {T } to Ye
0

defines
a different system of control data. However, by Mather’s uniqueness result,9 there is
a homeomorphism  e

0

of Ye
0

that takes {T 0}Y
e

0

to {T }Y
e

0

. This implies that if Y� is a
stratum that is mapped to (1, 0) and Y⌧ is mapped to e0, then

⇡� = ⇡� � e
0

� ⇡⌧ 0 since ⇡⌧ =  e
0

� ⇡� 0

By repeating the construction of a retraction outlined in Proposition 11.1.26, but using
the control data {T 0}Y

e

0

instead to construct the family of lines, we get a map r 0e
0

that
carries the fiber over a 0 to the fiber over a. Post-composing r 0e

0

with  e
0

gives the
equality re

0

=  e
0

� r 0e
0

. This construction gives the left most triangle in the following
commutative diagram:

Y(1,0) Ya
r
a

 
e

0oo
'
b,a // Yb

r
b

 
e

0// Y(1,1/2) Yc
r
c

 
e

1oo
'
d,c // Yd

r
d

 
e

1// Y(1,1)

Ya 0

r
0

aa
r 0
e

0

OO

'
b

0,a 0
// Yb 0

r 0
e

0

OO

r
1/2

<<

i
b

0
// Y[b 0,c 0]

r
1/2

OO

Yc 0i
c

0
oo

r
1/2

bb
r 0
e

1

OO

'
d

0,c 0
// Yd 0

r 0
e

1

OO

r
1

==

Now we explain the other maps in this diagram. The homeomorphisms 'b,a and
'b 0,a 0 are constructed by taking a controlled vector field {⌘f,⌘e

0

,⌘e
1

} in I2 minus the

9 Mather mentions at the bottom of page 492 of [Mat12] that any Whitney stratified subset Z of a manifold
M has a unique, up to isomorphism, structure as a Thom-Mather stratified set. This is not explicitly
proved, but it follows from Mather’s Corollary 10.3 as explained by Goresky: Suppose Z is given two
different structures of control data {T } and {T 0}. If we consider Z⇥R as a Whitney stratified subset
of M ⇥ R, then {T } and {T 0} can be extended to control data on Z ⇥ (-✏, ✏) and Z ⇥ (1 - ✏, 1 + ✏),
respectively. Then, using the proof of prop. 7.1, one can find control data on all of Z⇥R that agrees
with the ✏ extensions of {T } and {T 0}. This space, now viewed as a Thom-Mather stratified set, is then
isomorphic via Corollary 10.3 to the set where just Z⇥R is given the extension of just the control data
{T }.
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vertices using the control data {T 0} over {Tf, Te
0

, Te
1

}. Since d⇡e
0

(⌘f(s, t)) = ⌘e
0

(⇡e
0

(s, t))
the controlled vector field over this one commutes with f and gives

'b,a � re 0
0

= re 0
0

�'b 0,a 0 .

Again, the commutation relations in Proposition 11.1.26 allows us to, using the control
data {T } to factor r1/2 = rb � re

0

. However, the uniqueness theorem tells us that re
0

=
 e

o

� r 0e
0

where  e
0

. A simple diagram chase now completes the argument. Comparing
the maps associated to ↵(t) and �(t) is much simpler and uses the same ideas. We leave
it to the reader.

Remark 11.2.18 (Alternative Idea for a Proof). An alternative approach makes use of
the properties of o-minimal structures. The generic triviality theorem 4.11 of [vdDM96]
guarantees that we have a definable trivialization of the map over (0, 1).

f-1(�((0, 1)))
⇠=

h
//

�⇤f &&

F⇥ (0, 1)

yy
(0, 1)

For each point x in the fiber F, we get a lift {x}⇥ (0, 1) of the open interval. Applying
the inverse homeomorphism, h-1({x} ⇥ (0, 1)) defines a definable path ↵x : (0, 1) !
f-1(�([0, 1])).

Mário Edmundo and Luca Prelli, in their recent note [EP12] reworking the six basic
Grothendieck operations for sheaves in the o-minimal setting, have given a tantalizing
reformulation of what characterizes a definable proper map. They use an idea of Ya’acov
Peterzil and Charles Steinhorn [PS99] that shows that being definably compact (equiv-
alently, closed and bounded) is equivalent to being able to to complete curves. A map
f : Y ! X is definably proper if for every definable curve ↵ : (0, 1) ! Y and every
definable map [0, 1]! X there is at least one way to complete the diagram:

(0, 1) ↵ //

✏✏

Y

f
✏✏

[0, 1] //
↵̄

==

X

If one assumes all the maps are continuous as well as definable then the completion in
the diagram above is unique.10

10 One of the unusual features of o-minimal topology is that definable maps need not always be continuous,
thus the added hypothesis. Even discontinuous maps can have triangulable graphs.
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In our situation, the hypotheses guarantee that for each point x 2 F, we can complete
the curve ↵x : (0, 1) ! I⇥X Y to a curve ↵̄x : [0, 1]. By associating endpoints over 0 to
endpoints over 1 we define a set-theoretic map g : f-1(�(0))! f-1(�(1)). The hard work
is showing that this map g is continuous and is invariant under homotopy.
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D U A L I T Y: E X C H A N G E O F S H E AV E S A N D C O S H E AV E S

“Quod superius sicut quod inferius, et quod inferius sicut quod superius, ad perpe-
tranda miracula rei unius.”

— Hermes Trismegistus [VW88, p. xxix]

In this section, we are concerned with the derived equivalence of cellular sheaves and
cosheaves. In Section 12.1, we introduce the functor that establishes this equivalence
and try to motivate it topologically via taking the “closure” of the data over an open
cell. In the case when X is a manifold, Theorem 12.1.3 gives us a duality result for
data that relates sheaf cohomology with our new theory of sheaf homology. Finally, the
equivalence is proved in Section 12.2.

12.1 taking closures and classical dualities re-obtained

In this section we are going to explain the all-important Poincaré-Verdier duality as an
exchange of sheaves and cosheaves. To introduce this duality, we explain an odd, but
clean way of going from a cellular sheaf to a complex of cellular cosheaves. This is meant
to express the idea that duality is an exchange of open and closed cells.

Suppose we start with a sheaf F on the unit interval X = [0, 1] stratified with end points
x = 0, y = 1, and a = (0, 1). Such a sheaf is just a diagram of vector spaces of the form

F(a)

F(x)

⇢
a,x

<<

F(y).

⇢
a,y

cc

Now we are going to extend the value of the sheaf on a cell � to its closure �̄ by defining
bF(⌧) = F(�) for every cell ⌧ 6 � and using the identity maps from � to its faces. This in
effect smears the value of the sheaf on an open cell onto all of its faces. However, what

231
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should we do to the values of the sheaf already stored on a face ⌧? This is where we use
the different slots in a complex of vector space to store independently the values:

F(a) F(a)idoo id // F(a)

F(x)

⇢
a,x

OO

0oo

OO

// F(y).

⇢
a,y

OO

For dimension reasons, it should be clear that this smearing operation defines an assign-
ment of chain complexes to each open cell with chain maps extending to the faces:

bP(F)(a)
r•
x,a

yy

r•
y,a

%%
bP(F)(x) bP(F)(y).

This motivates the following general definition of a functor bP: to a cellular sheaf F 2Shv(X) we associate the following cosheaf of chain complexes bP(F)

bP(F) : �  F(�)!
M

�6
1

⌧

F(⌧)!
M

�6
2

�

F(�)! · · · .

where F(�) is placed in cohomological degree dim |�| or homological degree -dim |�|
However, in order for this to be a chain complex, following two arrows in sequence
should give zero. In order to guarantee this we need to use the fact that X is a cell
complex, and as such for any pair of cells � 62 � differing in dimension by two, there are
precisely two ways ⌧1, ⌧2 of going between � and �. Using the signed incidence relations
[� : ⌧i] and the restrictions maps internal to F allows us to define the differentials in this
complex by di+1 := �[⌧ : �]⇢F�,⌧. Now let’s consider a cell � that is a codimension one
face of �, then the extension map r•�,� is defined to be the chain map

0 //

ri-1

�,⌧
✏✏

F(�) di //

ri
�,⌧
✏✏

L
�6

1

⌧ F(⌧)
di+1

//

ri+1

�,⌧
✏✏

L
�6

2

� F(�)

ri+2

�,⌧
✏✏

F(�)
di-1

//
L

�6
1

� F(�)
di
//
L

�6
2

⌧ F(⌧)
di+1

//
L

�6
3

� F(�)

.

The reason it is a chain map is clear from the fact that if � 6 � then U� ⇢ U� and so the
chain complex bP(F)(�) simply includes term by term into the chain complex bP(F)(�).
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Although the idea of a cosheaf of chain complexes is perhaps easier to visualize, for
actual algebraic manipulation, one uses a chain complex of cosheaves to express the
same idea in a different way.

Definition 12.1.1 (Poincaré-Verdier Equivalence Functor). Let X be a cell complex and
let Shv(X) and CoShv(X) denote the categories of cellular sheaves and cosheaves re-
spectively. We define the Poincaré-Verdier Equivalence Functor bP : Db(Shv(X)) !
Db(CoShv(X)) by the following formula: to a sheaf F 2 Shv(X) we associate the follow-
ing complex of projective co-sheaves, the cohomological degree corresponding to the
dimension of the cell:

· · · //
L

�i2X[�̂
i]F(�

i) [�:�]⇢
F

//
L

�i+12X[�̂
i+1]F(�

i+1) [�:⌧]⇢
F

//
L

⌧i+22X[⌧̂
i+2]F(⌧

i+2) // · · ·

Here �i denotes the i-cells and [�i : �i+1] = {0,±1} records whether the cells are incident
and whether orientations agree or disagree. The maps in between are to be understood
as the matrix �[�i : �i+1]⇢F�,�.

For a complex of sheaves

Fi

✏✏

 · · · //
L

�j+12X[�̂
j+1]F

i(�j+1)

[�:⌧]⇢F
i

//

✏✏

L
⌧j+22X[⌧̂

j+2]F
i(⌧j+2) //

✏✏

· · ·

Fi+1

✏✏

 · · · //
L

�j+12X[�̂
j+1]F

i+1(�j+1)

[�:⌧]⇢F
i+1

//

✏✏

L
⌧j+22X[⌧̂

j+2]F
i+1(⌧j+2) //

✏✏

· · ·

Fi+2  · · · //
L

�j+12X[�̂
j+1]F

i+2(�j+1)

[�:⌧]⇢F
i+2

//
L

⌧j+22X[⌧̂
j+2]F

i+2(⌧j+2) // · · ·

where we then pass to the totalization.

Before discussing why this functor is an equivalence, let us deduce a few computa-
tional consequences of this functor.

Theorem 12.1.2. If F is a cell sheaf on a cell complex X, then

Hi
c(X; F) ⇠= H-i(X; bP(F)).

Proof. First we apply the equivalence functor bP to F

0 //
L

v2X[v̂]
F(v)

[v:e]⇢e,v
//
L

e2X[ê]
F(e)

[e:�]⇢
�,e
//
L

�2X[�̂]
F(�) // · · ·
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Taking colimits (pushing forward to a point) term by term produces the complex of
vector spaces

0 //
L

v2X F(v)[v:e]⇢e,v
//
L

e2X F(e)[e:�]⇢
�,e
//
L

�2X F(�)
// · · ·

which the reader should recognize as being the computational formula for computing
compactly supported sheaf cohomology.

Now let us give a simple proof of the standard Poincaré duality statement on a mani-
fold X with coefficients in an arbitrary cell sheaf F, except this time the sheaf homology
groups are used.

Theorem 12.1.3. Suppose F is a cell sheaf on a cell complex X that happens to be a
compact manifold (so it has a dual cell structure X̂), then

Hi(X; F) ⇠= Hn-i(X; F).

Where the group on the right is not just notational, but it indicates the left-derived
functors of p† on sheaves.

Proof. We repeat the first step of the proof of the previous theorem. By feeding F through
the equivalence bP we get a complex of cosheaves. Pushing forward to a point yields a
complex whose (co)homology is the compactly supported cohomology of the sheaf F.
Now we recognize that the formula yields a formula for the Borel-Moore homology for
the cosheaf naturally defined on the dual cell structure.

0 //
L

v2X F(v)

✏✏

[v:e]⇢e,v
//
L

e2X F(e)

✏✏

[e:�]⇢
�,e
//
L

�2X F(�)

✏✏

// · · ·

0 //
L

ṽ2X̃
bF(ṽ)

[ṽ:ẽ]⇢ẽ,ṽ
//
L

ẽ2X̃
bF(ẽ)

[ẽ:�̃]⇢
�̃,ẽ
//
L

�̃2X̃
bF(�̃) // · · ·

Taking the homology of the bottom row is the usual formula for the Borel-Moore ho-
mology of a cellular cosheaf except the top dimensional cells are place in degree 0, the
n- 1 cells in degree -1, and so on. Everything being shifted by n = dimX we get the
isomorphism

H-i(X; bP(F)) ⇠= HBM
n-i(X̃;bF).

However, we already observed in Theorem 7.4.3 that the diagrams bF on X̃ and F on X
are the same in every possible way, so in particular sheaf homology of F must coincide
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with cosheaf homology of bF. Thus using compactness to drop the Borel-Moore label and
chaining together the previous theorem we get

Hi(X; F) ⇠= H-i(X; bP(F)) ⇠= Hn-i(X̃;bF) ⇠= Hn-i(X; F).

12.2 derived equivalence of sheaves and cosheaves

Historically, the derived equivalence of cellular sheaves and cosheaves appears in a few
places and is re-discovered again and again. In chronological order, the first published
proof appears to be in the 1998 paper of Peter Schneider in “Verdier Duality on the Build-
ing” [Sch98], which is a follow-up of a longer paper connecting sheaves, buildings and
representation theory [Sch97]. Unfortunately, Schneider uses the term “local coefficient
systems” to mean what we mean by cellular cosheaves. At around the same time Maxim
Vybornov made explicit mention of the relationship between sheaves and cosheaves, re-
lating them through Koszul duality [Vyb99], but it took up until 2005 for Kohji Yanagawa
to explicitly state that Vybornov’s work implied the derived equivalence of sheaves and
cosheaves [Yan05].

However, the perspective presented here was arrived at independently of the above
work. In early March 2012, Bob MacPherson gave a lecture (which the author attended)
where he conjectured that the derived category of cellular sheaves and cosheaves should
be equivalent. Within a few weeks the author produced a proof. After some truly
insightful comments from David Lipsky, the equivalence was refined to its current form.

Although the ideas were foreshadowed by many sources, the use of stalk (co)sheaves
appears to be a novel way of arguing.

Theorem 12.2.1 (Equivalence). bP : Db(Shv(X))! Db(CoShv(X)) is an equivalence.

Proof. First let us point out that the functor bP really is a functor. Indeed if ↵ : F! G is a
map of sheaves then we have maps ↵(�) : F(�)! G(�) that commute with the respective
restriction maps ⇢F and ⇢G. As a result, we get maps [�̂]F(�) ! [�̂]G(�). Moreover, these
maps respect the differentials in bP(F) and bP(G), so we get a chain map. It is clearly
additive, i.e. for maps ↵,� : F ! G bP(↵ + �) = P(↵) + P(�). This implies that bP
preserves homotopies.

It is also clear that bP preserves quasi-isomorphisms. Note that a sequence of cellular
sheaves A• is exact if and only if A•(�) is an exact sequence of vector spaces for every
� 2 X. This implies that bP(A•) is a double-complex with exact rows. By standard results
surrounding the theory of spectral sequences or by the acyclic assembly lemma ([Wei94]
Lem. 2.7.3) we get that the totalization is exact.
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Let us understand what this functor does to an elementary injective sheaf [�]V . Apply-
ing the definition we can see that

bP : [�]V  L
⌧0⇢�[⌧̂

0]V // · · · //
L

⌧i⇢�[⌧̂
i]V // · · · // [�̂]V

which is nothing other than the projective cosheaf resolution of the skyscraper (or stalk)
cosheaf ŜV� supported on �, i.e.

ŜV� (⌧) =

�
V � = ⌧

0 o.w.

Consequently, there is a quasi-isomorphism q : bP([�]V) ! ŜV� [-dim�] where ŜV� is
placed in degree equal to the dimension of � assuming that [�]V is initially in degree 0.
By abusing notation slightly and letting P send cosheaves to sheaves, we see that

P(q) : PbP([�]V)! P(SV� ) = [�]V

and thus we can define a natural transformation from PbP to idDb(Shv) when restricted to
elementary injectives. However, by Lemma 7.1.6 we know that every injective looks like
such a sum, so this works for injective sheaves concentrated in a single degree. However,
it is clear that bP sends a complex of injectives, before taking the totalization of the double
complex to the projective resolutions of a complex of skyscraper cosheaves. Applying
bP to the quasi-isomorphism relating the double complex of projective cosheaves to the
complex of skyscrapers, extends the natural transformation to the whole derived cate-
gory. However, since bP preserves quasi-isomorphisms, this natural transformation is in
fact an equivalence. This shows PbP ⇠= idDb(Shv). Repeating the argument starting from
co-sheaves shows that

bP : Db(Shv(X))$ Db(CoShv(X)) : P
is an adjoint equivalence of categories.

The above proof should be taken as the primary duality result from which other dual-
ities spring. This was not always appreciated and the author’s first attack on the proof
was to chain together two well-known dualities, which we review in the next two sec-
tions.
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12.2.1 Linear Duality

There is an endofunctor on the category of finite dimensional vector spaces vect given
by sending a vector space to its dual V  V⇤. This functor has the effect of taking a
cellular sheaf (F, ⇢) to a cellular co-sheaf (F⇤, ⇢⇤), since the restriction maps get dualized
into extension maps. It is contravariant since a sheaf morphism F ! G gets sent to a
co-sheaf morphism in the opposite direction F⇤  G⇤ as one can easily check. We can
promote this functor to the derived category, using a subscript f to remind the reader
when we restrict to the finite dimensional full subcategories.

Definition 12.2.2 (Linear Duals). Define V̂ : Db(Shv(X))op ! Db(CoShv(X)) as follows

- V̂(F•) = (F⇤)-•, i.e. take a sheaf in slot i, dualize its internal restriction maps ⇢Fi�,⌧

to extension maps rF
i⇤
⌧,� to obtain a co-sheaf and then put it in slot -i.

- V̂ sends differentials between sheaves di to their adjoints in negative degree
@-i-1 := (di)⇤

?( · · · // Fi di // Fi+1 // · · · ) = · · · // [(Fi+1)⇤]-i-1

@-i-1

// [(Fi)⇤]-i // · · ·

We’ll adopt the convention that lowering the index increases the degree @-i-1 ! @i.

We will reserve the right to abuse notation and let V map from co-sheaves to sheaves
in the obvious manner, i.e. V : Db(CoShv(X))op ! Db(Shv(X)) or formally equivalent
V : Db(CoShv(X))! Db(Shv(X))op.

Lemma 12.2.3. V̂f : D
b(Shvf(X))! Db(CoShvf(X))op is an equivalence of categories.

Proof. It is clear that if ↵ : I• ! J• is a map in the category of complexes of sheaves
homotopic to zero ↵ ' 0, i.e. there exists a map h : I• ! J•-1, written h : I ! J[-1]
such that ↵n - 0n = dn-1

J hn + hn+1dn
I . Writing out how V̂ acts carefully we see that

V̂(↵) : V̂(J) ! V̂(I) and V̂(h) : V(J[-1]) = V̂(J)[+1] ! V̂(I) defines a homotopy between
V̂(↵) and V̂(0) = 0 by setting (h⇤)• = V̂(h)•-1.
V̂ thus sends Kb(Inj- Sf)

op to Kb(Proj-Cf) and composed twice VV̂ : Kb(Inj- Sf)!
Kb(Inj- Sf) is naturally isomorphic to the identity functor, so it is an equivalence. We
can repeat the arguments for co-sheaves and use formality to put the op where we want.



12.2 derived equivalence of sheaves and cosheaves 238

12.2.2 Verdier Dual Anti-Involution

Definition 12.2.4 (Verdier Dual). The Verdier dual functor D : D(Shvf(X)) !
D(Shvf(X))op is defined as D := Hom(-,!•

X). Recall that Hom(F,G) is a sheaf
whose value on a cell � is given by Hom(F|st(�),G|st(�)), i.e. natural transformations
between the restrictions to the star of �.

The complex of injective sheaves !•
X is called the dualizing complex of X. It has in

negative degree !-i
X the sum over the one-dimensional elementary injectives concen-

trated on i-cells [�i]. The maps between use the orientations on cells to guarantee it is a
complex.

· · · // �|⌧|=i+1[⌧]
�[�:⌧] // �|�|=i[�]

�[�:�]// �|�|=i-1[�] // · · ·

The Verdier dual of F is the complex of sheaves D•F := Hom(F,!•
X). Written out explic-

itly it is

· · · // �|⌧|=i+1[⌧]
F(⌧)⇤

�[�:⌧]⇢⇤
// �|�|=i[�]

F(�)⇤

�[�:�]⇢⇤
// �|�|=i-1[�]

F(�)⇤ // · · ·

Proposition 12.2.5. The functor bP : Db(Shvf(X))! Db(CoShvf(X)) composed with linear
duality V : Db(CoShvf(X))! Db(Shvf(X))op gives the Verdier dual anti-equivalence, i.e.
D ⇠= VbP.

Proof. Just check by hand.

Remark 12.2.6. We could have used well-known facts about Verdier duality to prove a
weaker version of our main theorem by restricting to finitely generated stalks.
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C O S H E AV E S A S VA L U AT I O N S O N S H E AV E S

“Speech is the twin of my vision....it is unequal to measure itself.”

— Walt Whitman’s Song of Myself [25]

The development of cosheaves as a theory is largely fragmented. Researchers at dif-
ferent points in time have found a use for it here and there, at the service of different
purposes and interests. The more strongly categorical and logical community have done
some considerable work understanding the relationship between the topos of sheaves
and cosheaves. One insight that seems very worthwhile is that cosheaves act on sheaves
in a natural way. Although one can use a little bit of category theory to draw this
conclusion, we use this to give some surprising reformulations of classical sheaf theory.
Namely, the primary observation of this section is that the action of taking compactly
supported cohomology of a sheaf can be interpreted as an action of a very particular
cosheaf on the category of all sheaves.

13.1 left and right modules and tensor products

Suppose R is a ring with unit 1R. One can think of R as a category with a single object ?
whose set of morphisms

HomR(?, ?) ⇠= R

has the structure of an abelian group. The multiplication in the ring plays the role of
a composition so r · s = r � s. The abelian group structure, which corresponds to the
ability to add morphisms r+ s, reflects the fact that rings have an underlying abelian
group structure. One says that R is a pre-additive category, or is a category enriched inAb — the category of abelian groups.

An additive functor B : R! Ab is a functor that preserves the abelian group structure,
so it picks out a single abelian group, which we also call B, and satisfies the relation
(r+ s) · B = r · B+ s · B and (rs) · B = r · (s · B) so such a functor is precisely the data
of a left R-module. Dually, a contravariant functor A : Rop ! Ab prescribes the data of

239
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a right R-module. Taking the tensor product over Z of A and B allows us to define a
bi-module

A⌦B : Rop ⇥ R! Ab (?, ?) 7! A⌦Z B.

The latter is the group freely generated by pairs of elements from A and B modulo the
usual relations (a+ a 0)⌦ b = a⌦ b+ a 0 ⌦ b and a⌦ (b+ b 0) = a⌦ b+ a⌦ b 0. However,
in the presence of the action of a ring R, there is another tensor product A⌦R B that
further quotients A⌦Z B by the relation (a · r)⌦ b = a⌦ (r · b). Said using diagrams, we
require that for each r, the following diagram commutes.

A⌦B
1
A

⌦B(r)//

A(r)⌦1
B

✏✏

A⌦B

✏✏
A⌦B // A⌦R B

In other words there is a coequalizer

A⌦Z R⌦Z B
(a,r,b)7!(ar,b)

//
(a,r,b)7!(a,rb) // A⌦Z B // A⌦R B

that realizes the tensor product using purely categorical operations. This allows us to
work in a greater degree of generality by making use of a special type of colimit called a
coend, that generalizes the tensor product described above.

Definition 13.1.1 (Tensoring Sheaves with Cosheaves). Let X be a topological space and
let bG and F be a pre-cosheaf and a pre-sheaf respectively, both valued in Vect. Note that
for every pair of objects U! V in Open(X) we have a diagram

bG(V)⌦ F(V)

bG(U)⌦ F(V)

rG
V ,U⌦id

66

id⌦⇢F
U,V ((

bG(U)⌦ F(U)

which is the building block in defining the coend or tensor product over X

M

U!V

bG(U)⌦ F(V)◆
M

W

bG(W)⌦ F(W)!
ZOpen(X)

bG(W)⌦ F(W) =: bG⌦X F.
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We illustrate this definition with an immediate example.

Example 13.1.2 (Stalks and Skyscraper Cosheaf). Recall that we defined the skyscraper
cosheaf at x to be the cosheaf

Ŝx(U) =

�
k if x 2 U

0 other wise

With some thought one can show that the tensor product of any pre-sheaf F with the
cosheaf Ŝx yields

Ŝx ⌦X F ⇠= Fx

by treating F as a variable which can range over all pre-sheaves, one gets, in particular, a
functor

Ŝx ⌦X - : Shv(X)! Vect F Fx.

The previous example demonstrates an important observation: The operation of taking
stalks is equivalent to the process of tensoring with the skyscraper cosheaf.

To see how far this observation can be generalized, note that if we fix bG and let F vary
then we get a functor

bG⌦X - : Shv(X)! Vect
that is defined in terms of colimits and is thus co-continuous (it sends colimits to colim-
its). Now we are free to take an arbitrary cosheaf and let it act on sheaves. The “one
obvious choice” of taking stalks at a point is run over by a veritable slew of valuations,
one for each cosheaf. Moreover, it is clear that this description extends to a pairing
between the symmetric monoidal categories CoShv(X) and Shv(X), i.e.

-⌦X - : CoShv(X)⇥Shv(X)! Vect (bG, F) 7! bG⌦X F :=

ZOpen(X)
bG(U)⌦ F(U),

although we haven’t used the sheaf or cosheaf axiom anywhere, so the pairing is actually
valid for pre-sheaves and pre-cosheaves.

13.2 compactly-supported cohomology

Although the idea of using coends to tensor together sheaves and cosheaves has been
independently re-discovered many times, cf. Jean-Pierre Schneider’s 1987 work [Sch87],
it has not been used to do any serious work. This is a shame in light of the following
1985 theorem of A.M. Pitts [Pit85].
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Theorem 13.2.1. Let X be any topological space. Every colimit-preserving functor on
sheaves arises by tensoring with a cosheaf, i.e.

CoShv(X; Set) ⇠= Funco-cts(Shv(X; Set), Set).
This theorem is also stated in Marta Bunge and Jonathan Funk’s 2006 book “Singular

Coverings of Toposes” [BF06] as theorem 1.4.3, which further surveys some of Lawvere’s
philosophy of distributions on topoi. The topos community deserves commendation for
keeping the study of cosheaves alive during the past few decades, but so far work in the
enriched and computable setting of vector spaces is largely missing.

We attempt to partly remedy this gap by establishing a connection between the tensor
operation and the cohomology of sheaves. However, instead of establishing an enriched
version of Pitt’s theorem,1 we will use it as a guide. For example, in classical sheaf theory,
compactly supported cohomology is gotten by taking the constant map p : X ! ? and
associating to it the pushforward with compact supports functor p! : Shv(X)! Shv(?) ⇠=Vect. Of course, just applying p! defines only compactly supported zeroth cohomology
of a sheaf H0

c(X; F). To get the higher compactly supported cohomology groups one takes
an injective resolution and applies p! to the resolution. The result will be a complex of
vector spaces, whose cohomology in turn produces the desired groups:

F! I•  Rp! := p!I
• Hi(p!I

•) := Hi
c(X; F).

Historically the first fundamental duality result in sheaf theory was the statement
that Rp! admits a right adjoint on the level of the derived category. This adjunction is
sometimes called global Verdier duality:

Hom(Rp!F,G) ⇠= Hom(F,p!G).

By applying the fact that left adjoints are co-continuous one is led to believe, in light
of Pitt’s theorem, that there should be a cosheaf that realizes the operation of taking
derived pushforward with compact supports.

In light of the derived equivalence between cellular sheaves and cosheaves established
in this paper, we provide an explicit description of the complex of cosheaves that realizes
the derived pushforward.

1 We delay this for another paper.
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In preparation, one should note that there are several cosheaves that realize the opera-
tion of taking stalks at a point x in the cellular world. One is

�̂�(⌧) =

�
k if � = ⌧

0 o.w.

The other is the correct formulation of Ŝ� when using the Alexandrov topology

[�̂](⌧) =

�
k if ⌧ 6 �
0 o.w.

Recall that this is also the elementary projective cosheaf concentrated on � with value k.
Observe that the first cosheaf returns the value F(�) because every other cell is tensored

with zero. The second cosheaf works by restricting the non-zero values of F to the closure
of the cell �, but this restricted diagram has a terminal object given by F(�), so the colimit
returns F(�) as well.

This allows us to state the main theorem of this section.

Theorem 13.2.2. Let X be a cell complex, then the operation Rp! : Shv(X) ! Vect on
cellular sheaves is equivalent to tensoring with the image of the constant sheaf through
the derived equivalence, i.e.

bP(kX) =
M

v2X
[v̂]!

M

e2X
[ê]!

M

�2X
[�̂]! · · · .

Proof. The proof is immediate given the previous description of taking stalks, i.e. one
can check directly the formula

bP(kX)⌦X F ⇠=
M

v2X
F(v)!

M

e2X
F(e)!

M

�2X
F(�)! · · ·

whose cohomology is by definition the compactly supported cohomology of a cellular
sheaf F.

This perspective is especially satisfying for the following reason: it makes transparent
how the underlying topology of the space X is coupled with the cohomology of a sheaf
F. Compactly supported sheaf cohomology arises by tensoring with the complex of
cosheaves that computes the Borel-Moore homology of the underlying space.
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13.3 sheaf homology and future directions

The perspective of tensoring sheaves and cosheaves together offers numerous directions
for further research both in pure and applied sheaf theory. Just the heuristic that

each cosheaf determines a (co-)continuous valuation on the category of sheaves,

is suggestive of the idea that if we are going to use sheaves to model the world, then
cosheaves should allow us to weight different models of the world.

After having recovered some classical operations on sheaves, we are left with many
more to consider. For example the constant cosheaf k̂X should act on sheaves by return-
ing its colimit, i.e. zeroth sheaf homology

k̂X ⌦X - : Shv(X)! Vect F H0(X; F) = p†F.

By taking a projective resolution of the constant cosheaf once and for all, one then gets
for free a way of computing higher sheaf homology. This yet-to-be-explored theory
has only recently found its use in applications, e.g. the work of Sanjeevi Krishnan on
max-flow min-cut.

Additionally, the decategorification of the pairing of the categories of constructible
sheaves and cosheaves provides an alternative approach to the study of Euler integration
and leads in a natural way to the study of higher Euler calculus through higher K-
theory. More directly the operation of pairing sheaves and cosheaves is reminiscent of
a convolution operation. This area is under active research in collaboration with Aaron
Royer.
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G R A D E D D E S C R I P T I O N S O F T H E D E R I V E D C AT E G O RY

“Mathematics is the art of giving the same names to different things.”

— Henri Poincaré [Poi08]

In Chapter 7 we introduced the derived category of cellular sheaves. The fundamental
objects there are chain complexes parametrized by a cell complex. However, the derived
category takes a further step by identifying objects that are “essentially the same” when
viewed through the lens of cohomology sheaves.

In Section 14.1 we understand this principle better by demonstrating the well known
fact that the derived category of chain complexes of vector spaces (sheaves over a point)
is equivalent to the graded category of vector spaces. Our proof follows the standard
proof in [Wei94] except we use the barcode method for chain complexes introduced in
Example 6.3.7 to visualize explicitly what is happening. Roughly speaking, the derived
category of chain complexes allows us to remove the green bars in Figure 63 as they
“graph” the chain homotopy between the identity and the map that projects onto and
then includes the red dots.

This sets us up for Section 14.2, which culminates in a proof that the derived category
of cellular sheaves over a one-dimensional base space is equivalent to a graded category
of sheaves. This should seem plausible because over each cell, a chain complex is equiv-
alent to a graded vector space. Indeed, one could repeat the proof of Lemma 14.1.1
verbatim if it weren’t for the pesky fact that projecting onto the cohomology cell-by-cell
fails to define a sheaf map. However, the proof of the equivalence follows by construct-
ing an explicit replacement of every object in the derived category with an object where
such a naïve map will exist.

245
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figure 63: A Chain Complex for the 2-Sphere as Barcodes

14.1 the derived category for complexes of vector spaces

Here we warm-up with an alternative approach to the derived category of complexes of
vector spaces. Recall that a chain complex simply consists of a collection of vector spaces
and maps satisfying d2 = 0.

· · ·! Vi-1 ! Vi ! Vi+1 ! · · ·

Cohomology defines a functor from chain complexes to graded vector spaces simply by
placing the ith cohomology in degree i.

H⇤ : Cb(Vect)! grVect (V•,dv) {H⇤(V•,dV)}

A map of chain complexes f• : V• ! W• is a quasi-isomorphism if the maps Hi(f) :
Hi(V•)! Hi(W•) is an isomorphism for every non-negative integer i.

The derived category of chain complexes is defined to be the category of chain com-
plexes localized at the collection of quasi-isomorphisms. This is often simplified by
saying that

In the derived category quasi-isomorphisms are formally inverted.

To illustrate this slogan we will prove that every chain complex is quasi-isomorphic to
a graded vector space. This is the simplest instance of a more general theorem that we
prove in this chapter.

Lemma 14.1.1. A chain complex (V ,dV) is quasi-isomorphic to its cohomology
(H•(V ,dV), 0), viewed as complex with zero differentials.

Proof. It suffices to define a chain map

⇡• : (V ,dV)! (H•(V ,dV), 0) or ◆• : (H•(V ,dV), 0)! (V ,dV)

that induces the obvious isomorphism Hi(⇡) : Hi(V) ! Hi(V). We will use the decom-
position for persistence modules from Theorem 6.3.3 to define this map.
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In Example 6.3.7 we observed that any chain complex (V ,dV) is isomorphic to a direct
sum

V ⇠=
M

i2Z

Sni

i � Pm
i

i

where
Si : · · ·! 0! k! 0! · · ·

is a length zero interval module and

Pi : · · ·! 0! k! k! 0! · · ·

is a length one interval module, with the first non-zero term in degree i. If we group
terms so that

Bi-1 := P
m

i-1

i Hi(V) := Sni

i Bi := Pm
i

i

then we get an obvious map, which precomposed with the above isomorphism is our
desired quasi-isomorphism.

· · · // Bi �Hi(V)�Bi-1 //

⇡
✏✏

Bi+1 �Hi+1(V)�Bi //

⇡
✏✏

· · ·

· · ·
0

// Hi(V)
0

// Hi+1(V) // · · ·

One can in fact show more. Let ⇡ : Bi �Hi(V)�Bi-1 ! Hi(V) be the obvious projection
and ◆ : Hi(V) ! Bi-1 �Hi(V)� Bi be the obvious inclusion, then one can construct an
explicit chain homotopy s joining ◆ � ⇡ to the identity.

First it is useful to observe that, in this basis, the differentials have the form

di =

2

64
0 0 0

0 0 0

id 0 0

3

75

A clear candidate for the map si is the projection onto Bi-1 that then identifies it with its
isomorphic copy as the third summand in the decomposition of Vi-1, i.e. the matrix

si =

2

64
0 0 id
0 0 0

0 0 0

3

75
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One can then check directly the equation

id - ◆ � ⇡ = di-1 � si + si+1 � di.

Remark 14.1.2. Using the barcode description, the map si simply follows length one
barcodes to the left. Thus the length one barcodes can be interpreted as the “graph” of
a chain homotopy.

Corollary 14.1.3. For any collection of integers mi and ni we have the following isomor-
phisms in the derived category.

M

i2Z

Sni

i '
M

i2Z

Sni

i � Pm
i

i

The upshot of the above corollary is that

“Indecomposables do not survive the derived category!” [Mac14a]

14.2 derived complexes of cellular sheaves

Recall from Chapter 7 that a complex of cellular sheaves F• assigns to every cell � a chain
complex and to every pair of incident cells � 6 ⌧ a chain map ⇢•⌧,� : F•(�) ! F•(⌧). For
each i we can define the ith cohomology sheaf as the assignment

Hi(F•) : � Hi(F•(�)).

The restriction maps being defined as the map induced on cohomology by ⇢•⌧,�. A quasi-
isomorphism is a map of complexes f• : F• ! G• that induces isomorphisms on each
cohomology sheaf. We can also view all of the cohomology sheaves as a single graded
cohomology sheaf H⇤F•.

14.2.1 Counterexample to the Naïve Approach

To begin, let us consider the simplest possible space where a complex of sheaves has
interesting behavior. Let X = [0, 1) with cell structure v = {0} and e = (0, 1). A complex
of sheaves over X is completely described by two chain complexes and a chain map
between them:

⇢•e,v : F
•(v)! F•(e)
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figure 64: The Counterexample

At first glance there should be a simple adaptation of Lemma 14.1.1 to a pair of chain
complexes. Indeed, we can use Theorem 6.3.3 over each cell to obtain a candidate inclu-
sion map from the cohomology sheaf into the complex:

Fi(v)
⇢
e,v // Fi(e)

Bi
v �Hi

v �Bi-1
v

⇢
e,v //

⇠=

OO

Bi
e �Hi

e �Bi-1
e

⇠=

OO

Hi
v

Hi(⇢)
//

OO

Hi
e

OO

However such a map does not commute in general and as such fails to define a sheaf map.
For example, if F• was the following pair of complexes and chain map

k 1 // k

0 //

OO

k

1

OO

then the map ⇢ takes the one and only generator of Hi
v to an element of the boundaries

Bi-1
e , which is non-zero, but zero in cohomology, since Hi(⇢) = 0. We have provided a

barcode version of this counter example in Figure 64.
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14.2.2 Using the Calculus of Fractions Formulation

In order to address the counterexample to the naïve approach, we will employ a zig-zag
of morphisms. In this section we briefly review why such a zigzag is natural, when
viewing the derived category as the left calculus of fractions [GZ67]. An alternative
description of the derived category goes as follows [She85, p.52-3].

Definition 14.2.1 (Derived Category via Fractions). The bounded derived category of
cellular sheaves, Db(Shv(X)), has the same collection of objects as Fun(X, Ch(Vect)), but
with a modified class of morphisms. A morphism from F• to G• is a diagram of the
following form

J•

F•

>>

G•

'
``

where the arrow decorated with a ' is a quasi-isomorphism. We declare two such
morphisms (diagrams) to be the same if there is a larger, commutative diagram that fits
in between them:

J•1

'
✏✏

F•

??

//

��

J•12 G•'oo

'
``

'
~~

J•2

'
OO

14.2.3 The Equivalence

We now proceed with a general method for addressing the earlier counterexample. The
basic method of argument is that we will define a quasi-isomorphic complex of sheaves
J• where the naïve approach does work. This is visualized in Figure 65.

J•

F•

'
??

H⇤F•

'
bb

Let’s first illustrate our method over the simple base space X = [0, 1).
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figure 65: Replacing the Counterexample with a Quasi-Isomorphic Sheaf

Lemma 14.2.2. Over X = [0, 1) with cell structure v = {0} and e = (0, 1), every bounded
complex of cellular sheaves F• is quasi-isomorphic to its graded cohomology sheaf H⇤F•,
i.e. F• is isomorphic to H⇤F• in the derived category.

Proof. As before, we decompose the chain complex over the vertex v and the edge e so
that F• has the following form

Bi+1
v �Hi+1

v �Bi
v

⇢i+1

F // Bi+1
e �Hi+1

e �Bi
e

Bi
v �Hi

v �Bi-1
v

⇢i
F //

di
v

OO

Bi
e �Hi

e �Bi-1
e

di
e

OO
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The map ⇢iF has an easily described form in this basis.

⇢iF =

2

64
↵i 0 0

�i Hi⇢ 0

�i �i-1 ↵i-1

3

75

The naïve inclusion map’s failure to commute is precisely described by non-zero terms
in the submatrix �i-1, as can be seen by inspecting the diagram below.

Bi
v �Hi

v �Bi-1
v

⇢i
F // Bi

e �Hi
e �Bi-1

e

Hi
v

Hi(⇢)
//

OO

Hi
e

OO

However, the complex of sheaves F• is quasi-isomorphic to the complex J• defined as
follows.

Bi+1
v �Bi+1

e �Hi+1
v �Bi

v �Bi
e

⇢i+1

J // Bi+1
e �Hi+1

e �Bi
e

Bi
v �Bi

e �Hi
v �Bi-1

v �Bi-1
e

⇢i
J //

di
v

OO

Bi
e �Hi

e �Bi-1
e

di
e

OO

The matrix representation for ⇢iJ has the desired form:

⇢iJ =

2

64
0 id 0 0 0

�i 0 Hi⇢ 0 0

�i 0 0 id

3

75

The quasi-isomorphism q• : F• ! J• is defined over the vertex v in any given degree i as

qi
v =

2

6666664

id 0 0

↵i 0 0

0 id 0

0 0 id
0 �i-1 ↵i-1

3

7777775
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and over the edge e as qi
e = id. By construction, the complex J• has a well defined sheaf

map

Bi
v �Bi

e �Hi
v �Bi-1

v �Bi-1
e

⇢i
J // Bi

e �Hi
e �Bi-1

e

Hi
v

Hi⇢
//

OO

Hi
e

OO

which extends to a quasi-isomorphism ◆ : H⇤F• ,! J• since each of the differentials
HiF• ! Hi+1F• are zero. This completes the proof.

We can now prove the general theorem of interest.

Theorem 14.2.3. Let X be an arbitrary one dimensional cell complex and F• a complex
of sheaves over X. Then F• is quasi-isomorphic to its graded cohomology sheaf. In
particular, we have the equivalence of categories

Db(Shv(X)) ' Shv(X; grVect).
Proof. The bulk of the argument is contained in Lemma 14.2.2, which we show extends
to the desired generality. The definition of Ji(v) where v is a vertex with more than one
incident edge is easily modified as follows:

Ji(v) := Bi
v

M

e>v
Bi
e �Hi

v �Bi-1
v

M

e>v
Bi-1
e

The restriction map to a single edge e 0 is defined exactly as in Lemma 14.2.2 with the
stipulation that factors Bi

e and Bi-1
e where e 6= e 0 are mapped to zero.

This argument implies that we can define the desired morphism

J•

F•
q

'
??

H⇤F•

'
◆

bb

in an open neighborhood of a vertex. However, since over each edge qi
e : F

i(e)! Ji(e) is
defined to be the identity map, these locally defined maps agree on the edges and hence
give a globally defined map of sheaves. This shows the equivalence with the graded
cohomology sheaf.

One can check that every map of sheaves f : F• ! G• extends to a map of the associated
sheaves Jf : J

•
F ! J•G so the construction is functorial and hence defines an equivalence of

categories.
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A M E T R I C O N T H E C AT E G O RY O F S H E AV E S

A�E⌦METPHTO⌃ MH�EI⌃ EI⌃IT⌦1

— Purported Inscription at The Academy

Science depends on knowing that measurements and observations should only be
trusted up to an interval of uncertainty. Saying that one is traveling about 30 miles per
hour depends on their being a continuum of speeds. It makes no sense to say that one is
traveling at a speed that happens to be an algebraic number. 2 Persistent homology has
addressed this issue in a rather elegant way. Given two functions f,g : Y ! R such that

||f- g||1 := sup
y

|f(y)- g(y)| < ✏

one can say that the sublevel sets obey the inclusions

f-1(-1, t] ⇢ g-1(-1, t+ ✏] and g-1(-1, t] ⇢ t-1(-1, t+ ✏]

for every value of t. In the language of [CCSG+
09], one has an interleaving of sublevel

sets:
f-1(-1, t]

((

// f-1(-1, t+ ✏]

))

// f-1(-1, t+ 2✏]

g-1(-1, t]

66

// g-1(-1, t+ ✏]

55

// g-1(-1, t+ 2✏]

By functoriality of homology, one obtains a notion of interleaving of functors inFun(R, Vect), where R with its partial order is viewed as a category. Defining the
interleaving distance to be the infimum over all ✏ such that there is an ✏-interleaving
gives an extended pseudo-metric on the category of such functors.

1 “Let no one who cannot think geometrically enter.” [OR]
2 This metaphor was used by Bob MacPherson in his opening remarks on “Continuity and the philosophy

of science.” [Mac14b]

254
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figure 66: Do Close Maps Give Rise to “Close” Sheaves?

In this chapter, we will consider a generalization of this approach, first for pre-sheaves
and then for sheaves. We will try to answer analogous questions such as, “Suppose we
have two maps f,g : Y ! X to a metric space that are close in the supremum norm, i.e.

d1(f,g) = sup
y2Y

dX(f(y),g(y)) < ✏.

Is there any reasonable sense where the pushforward sheaves f⇤kY and g⇤kY are close?”
It turns out that the answer is “yes,” but studying higher invariants of the fiber, such as
Hi for i > 1, is unstable to large perturbations. By studying interleavings of complexes
of sheaves, one obtains a derived stability result. To conclude the chapter, we provide
preliminary results towards equating the interleaving distance with a modified version of
the bottleneck distance described in [CSEH07] for definable sheaves with finite support
over the real line. The most important takeaway from this chapter is that interleavings
for sheaves and pre-sheaves are obstructed by global sections.

15.1 interleavings for pre-sheaves

Definition 15.1.1. Let (X,d) be a metric space. The ✏-thickening of open sets is the map
of posets

✏ : Open(X)! Open(X)
given by

U U✏ := [x2UB(x, ✏).

Of course, any map of posets dualizes to a map of posets ✏ : Open(X)op ! Open(X)op
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Remark 15.1.2. For metric spaces like Rn with the Euclidean metric, (U✏)✏ = U2✏. In
general, the triangle inequality implies that (U✏)✏ ✓ U2✏. The reverse containment is
also true if (X,d) is convex, for example. Convexity guarantees that intuitive results are
true, but it is not strictly necessary for any of the following arguments.

Definition 15.1.3 (Thickened Pre-Sheaf). Using the previous two definitions, we can de-
fine the ✏-thickening of a pre-sheaf F via the formula

F✏ := F � ✏ i.e. F✏(U) := F(U✏).

Moreover, the thickening operation is functorial. If ' : F! G is a natural transformation,
then we get for free a natural transformation between the thickened pre-sheaves '✏ :
F✏ ! G✏. Consequently, we can define the ✏-thickening functor to be

✏⇤ : PreShv(X)! PreShv(X) F F✏.

One of the most important observations for working with interleavings is that since F
is a pre-sheaf we have a canonical natural transformation

⌘F✏ : F
✏ ! F

coming from ⇢U,U✏ : F✏(U) = F(U✏)! F(U). This follows by showing that for every pair
V ✓ U the square

F✏(U)
⇢
U,U✏

//

⇢
V

✏,U✏

✏✏

F(U)

⇢
V ,U
✏✏

F✏(V) ⇢
V ,V✏

// F(V)

commutes by virtue of F being a pre-sheaf:

⇢V ,U � ⇢U,U✏ = ⇢V ,U✏ = ⇢V ,V✏ � ⇢V✏,U✏

Of course, the map
⌘F2✏ : F

2✏ ! F

always exists as well and for metric spaces where U2✏ = (U✏)✏ it is equal to the compo-
sition ⌘F✏ � ✏⇤⌘F✏.

Remark 15.1.4 (Notation 2✏ vs. ✏✏). To avoid cumbersome notation, we may sometimes
substitute U2✏ for (U✏)✏, ⌘F2✏ for ✏⇤⌘F✏, F2✏ for ✏⇤F✏, and so on. For metric spaces such as
Rn with the Euclidean metric these differences do not exist and can be safely ignored.
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A version of the following definition was communicated to the author by Amit Pa-
tel [Pat14].

Definition 15.1.5 (Interleaving of Pre-Sheaves). Let F,G : Open(X)op ! D be two pre-
sheaves on a metric space X. We define an ✏-interleaving of F and G to be a pair of
natural transformations

'✏ : F
✏ ! G  ✏ : G

✏ ! F

that satisfy the compatibility relations

⌘F2✏ =  ✏ � ✏⇤'✏ ⌘G2✏ = '✏ � ✏⇤ ✏.

An interleaving is better summarized via the following commutative diagram:

F2✏

✏✏

✏⇤'
✏

''

G2✏

✏✏

✏⇤ 
✏

ww
F✏

✏✏

'
✏

''

G✏

✏✏

 
✏

wwF G

Observe that we have abused notation by writing F2✏ for ✏⇤F✏. Also observe that there is
a logical dualization for two pre-cosheaves.

Lemma 15.1.6. If two presheaves F and G are ✏-interleaved for some ✏ > 0, then they are
✏ 0-interleaved for every ✏ 0 > ✏.

Proof. Suppose that we have an ✏ interleaving, i.e. maps '✏ : F✏ ! G and  ✏ : G✏ that
induce the correct commutative diagram. If ✏ 0 > ✏ then the natural map F✏

0 ! F factors
through F✏ ! F, allowing us to define '✏ 0 = '✏⌘

F
✏,✏ 0 and symmetrically for  ✏ 0 . The map

(✏ 0)⇤'✏ 0 is defined by

F((U✏
0
)✏

0
) = F✏

0
(U✏

0
)! F✏(U✏

0
)! G(U✏

0
) = G✏

0
(U).

Observing that the map '✏ is natural for a pair of open sets U✏ ⇢ U✏
0 proves that we

have the commutative diagram in Figure 67.

Remark 15.1.7. One should note that if F and G are ✏-interleaved and G and H are
✏ 0-interleaved, then F and H are ✏+ ✏ 0-interleaved.

One should also note that if F and G are 0-interleaved, then they are isomorphic.
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F2✏

✏✏

��

F2✏
0

✏✏

��

oo

G2✏

✏✏

}}

G2✏ 0

✏✏

oo

||
F✏

✏✏

��

F✏
0

✏✏

oo

��

G✏

✏✏

||

G✏
0

✏✏

oo

{{
F Foo

G Goo

figure 67: Diagram for the Proof of Lemma 15.1.6

Definition 15.1.8. We can define the interleaving distance on pre-sheaves by declaring

d(F,G) := inf{✏ > 0 | 9✏- interleaving}.

If no interleaving exists, we define d(F,G) = 1. This is what we mean by an extended
metric.

For pre-sheaves the interleaving distance is an extended pseudo-metric. “Extended”
means that the distance 1 is allowed and “pseudo” means that if d(F,G) = 0, then it
does not follow that F = G. For sheaves, it is true that if a map induces isomorphisms on
stalks, then the map is an isomorphism of sheaves. This suggests that if for every ✏ > 0
there is an ✏-interleaving, then perhaps the sheaves are isomorphic. We will present an
argument in this direction later on.

15.1.1 Easy Stability

The following results were obtained independently of [BdS13].
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Lemma 15.1.9. Suppose f,g : Y ! X are continuous maps to a metric space that are less
than ✏ distance apart in the supremum norm, then the functors

bF : U f-1(U) and bG : U g-1(U)

are ✏-interleaved, when viewed as cosheaves.

Proof. By hypothesis, for every open set we have the following inclusions:

f-1(U) ✓ g-1(U✏) and f-1(U✏) ◆ g-1(U)

This implies that we have an interleaving of pre-images:

f-1(U2✏) g-1(U2✏)

f-1(U✏)

88OO

g-1(U✏)

ff OO

f-1(U)

88OO

g-1(U)

ff OO

Which is equivalent to saying that the functors bF and bG are ✏-interleaved.

Corollary 15.1.10. If f,g : Y ! X are continuous maps such that d1(f,g) < ✏, then the
cohomology presheaves

HiF : U Hi(f-1(U);k) and HiG : U Hi(g-1(U);k)

are ✏-interleaved for every i > 0.

Proof. This follows from the lemma since cohomology is a functor.

Corollary 15.1.11. If f,g : Y ! X are continuous maps such that d1(f,g) < ✏, then the
pushforwards of the constant sheaf on Y,

f⇤kY and g⇤kY ,

are ✏-interleaved.

Proof. The result follows by recalling the definition of the pushforward and that the
constant sheaf records H0 of an open set.
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15.1.2 Global Sections Obstruct Interleavings

In this section, we introduce the first major difference between the interleaving distance
for functors S : (R,6)! Vect and interleavings for pre-sheaves.

Lemma 15.1.12 (Obstruction to Interleavings). If F and G are pre-sheaves on a metric
space X and F(X) � G(X), then there is no ✏-interleaving, for any value of ✏.

Proof. Clearly X✏ = X. Recalling the compatibility condition for interleavings

F(X) = F2✏(X)

id

✏✏

'
2✏

(X)

((
G✏(X) = G(X)

 
✏vv

F(X)

implies that G(X)! F(X) is a surjection. Considering the analogous triangle

G2✏(X) = G(X)

id

✏✏

 
2✏

vv
F(X) = F✏(X)

'
✏

))
G(X)

implies that F(X) ! G(X) is a surjection, which together proves that F(X) ⇠= G(X). Con-
traposition proves the result.

Example 15.1.13 (Skyscraper Sheaf vs. Ephemeral Module). Suppose �x : R ! Vect is
the functor that assigns k to the points x 2 R and 0 everywhere else. Such a persistence
module is sometimes referred to as an ephemeral module. Without too much trouble,
one can see that this functor is interleaving distance 0 from the zero functor.

In contrast, the skyscraper sheaf Sx, which assigns to every open set U 3 x the vector
space k and 0 to any open set not containing x, is infinite distance away from the zero
sheaf.
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15.2 interleavings for sheaves

Now we want to emulate the above constructions for functors F : Open(X)op ! D that
satisfy the sheaf axiom. Of course, we can regard any sheaf F as a pre-sheaf and apply
the thickening construction to produce a pre-sheaf F✏. Is the resulting pre-sheaf also a
sheaf? No, because thickening can create intersections where there shouldn’t be any, as
in the following example.

Example 15.2.1. Let F = kX be the locally constant sheaf on X = R. If U1 = (0, 1) and
U2 = (1, 2), then for any ✏ > 0 we have that

F✏(U1 [U2)

xx &&
F✏(U1)

&&

F✏(U2)

xx
F✏(U1 \U2)

k

�� ��
k

��

k

��
0

is not a limit diagram. This is due to the obvious defect

(U1 \U2)
✏ 6= U✏1 \U✏2 .

In light of the above example, thickening the underlying pre-sheaf must be followed
by sheafification. Thus one approach to defining the thickening of a sheaf is to use the
the sheafification of the thickened pre-sheaf. However, there is a nicer definition of the
thickening of a sheaf that has the advantage that it can be defined in the derived setting,
as well as being easier to prove theorems with. We state this definition now:

Definition 15.2.2 (Thickening via Convolution). Let X be a metric space and let �̄✏X be
the subset of the product {(x,y)|d(x,y) 6 ✏}. Denote by ✏i the projection onto the ith

coordinate of �̄✏X. Define the ✏-thickened sheaf eF✏ to be ✏2⇤✏⇤1F. When the context is
clear we will omit the tilde.

We will not show that the sheafification of the thickened pre-sheaf is the same as the
above definition, as they very well could be different in certain cases.
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Definition 15.2.3 (Interleavings for Sheaves). We say two sheaves F and G are ✏-
interleaved if there are maps '✏ : eF✏ ! G and  ✏ : eG✏ ! F such that the following
diagram commutes

eF2✏

✏✏

✏⇤'
✏

&&

eG2✏

✏✏

✏⇤ 
✏

xxeF✏

✏✏

'
✏

''

eG✏

✏✏

 
✏

ww
F G

Derived Stability

Theorem 15.2.4. If f,g : Y ! X are ✏-close in the sup norm, then the derived pushfor-
wards of the constant sheaf kY are ✏-interleaved, i.e.

d(Rf⇤kY ,Rg⇤kY) 6 d1(f,g)

Proof.
f-1(U) ✓ g-1(U✏) and f-1(U✏) ◆ g-1(U)

The functors bF, bG : Open(X)! Top are ✏-interleaved, as already noted. This implies that
the complexes of singular cochains are interleaved, which, after subdivision, defines a
flabby resolution of the constant sheaf.

15.2.1 The Effect of Sheafification

In this section we investigate the impact of sheafification on interleavings of pre-sheaves.
After all, every sheaf is a presheaf, so we can apply the notion of interleaving to both
structures. As we will show by example, two pre-sheaves can be finite distance apart,
but then be infinite distance apart (not ✏-interleaved for any ✏) after sheafification. Con-
versely, we can produce two pre-sheaves that are infinite distance apart, whose sheafifi-
cations are interleaved.

Let the map drawn on the left of Figure 68 be called f and let the map on the right be
called g. As already observed in Corollary 15.1.10, the presheaves

H1F : U H1(f-1(U);k) and H1G : U H1(g-1(U);k)

are ✏-interleaved for ✏ larger than the radius of the circle. However, the sheafification of
both of these presheaves produce radically different sheaves.
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H0!
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figure 68: Two Maps and their associated Leray Sheaves

Recall from Definition 2.5.6 that the sheafification can be viewed as the sheaf of sec-
tions of the product over all the stalks mapping down to the base space.

Q
x2R

Fx

⇡

✏✏
R

For H1F, every stalk is the zero vector space. For H1G, the stalk at p is non-zero and all
other ones are zero. Consequently the sheafifications are

eF1 ⇠= 0 and eG1 ⇠= Sp

where Sp is the skyscraper sheaf at p. By lemma 15.1.12, these two sheaves are not
interleaved.

One might conjecture in light of the above example that sheafification is a distance
increasing operation. This is not the case. Consider the presheaf H1F from the example
above. One can easily see that it is not interleaved with the zero sheaf. However, the
sheafification of H1F is the zero sheaf. So sheafification took two presheaves that were
infinite distance apart and returned isomorphic (distance zero) sheaves.
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15.2.2 Thickening Global Sections

We will now prove that global sections remain unaffected by this thickening procedure.
This provides us with a sheafified version of Lemma 15.1.12.

Lemma 15.2.5. If X is a metric space such that the closed ✏-ball is connected for every
point of x and the projection map ✏1 : �̄✏X ! X is a closed map, then thickening preserves
global sections, i.e.

eF✏(X) ⇠= F(X).

Proof. This follows from a simpler version of the Vietoris mapping theorem, stated as
Theorem 11.7 of [Bre97]. Essentially, the Vietoris mapping theorem guarantees that

H0(X; F) ⇠= H0(�̄✏X; ✏⇤1F)

and since the pushforward ✏2⇤✏
⇤
1F has the same global sections of ✏⇤1F by functoriality

(global sections are gotten by pushing forward to a point), then the result follows.

15.2.3 Metric on Sheaves

Claim 15.2.6. If F,G 2 Shv(X) are interleaving-distance zero apart, i.e. there is a sequence
of {✏n} converging to zero where F and G are ✏n interleaved for each n, then F ⇠= G.

Sketch. We are going to define maps between the étalé spaces

' :
Y

x2X
Fx !

Y

x2X
Gx and  :

Y

x2X
Gx !

Y

x2X
Fx

with the property that they are inverses of one another.
Given any element sx 2 Fx there exists a U 3 x and a section sU such that (sU)x = sx.

However, since U is open, there exists an r > 0 and ✏n > 0 such that B(x, r+ 2✏n) ⇢ U.
This implies in turn that B(x, r)2✏n ⇢ U. Consequently, there is a lift s2✏nx 2 eF2✏nx of sx,
gotten by taking the image of su under the following composition:

F(U)! F(B(x, r+ 2✏n))! F(B(x, r)2✏n)! eF2✏nx

We then define
'(sx) := '✏nx � ⌘̂✏

n

,2✏
n

F
x(s

2✏
n

x )

Of course, by the definition of interleaving, we have a natural choice of a lift of '(sx) to
eG✏nx given by

g⌘✏
n

G
x'

2✏
n

x (s2✏nx ),
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which by construction has the property that applying  ✏x yields sx.
Of course it needs to be checked that such a lift is picked out by the symmetric con-

struction of the map  . It could have happened that a lift to eG✏
0
n

x for ✏ 0n 6= ✏n. However,
one only needs to observe that for any sheaf F we have the following commutative dia-
gram for any pair 0 < ✏ 0n < ✏n:

eF2✏n

✏✏

// eF✏n

✏✏

// F

eF2✏ 0n // eF✏ 0n

??

Arguing symmetrically and checking continuity of the resulting maps ' and  com-
pletes the proof.

Theorem 15.2.7 (Skeletal Metric Space). Let X be an arbitrary metric space. The inter-
leaving distance induces an extended metric on the skeleton of the category of sheavesShv(X). Here extended means that the value d(F,G) = 1 is allowed, i.e. there is no
interleaving between F and G whatsoever.

Proof. Recall that the skeleton of a category C is a full, isomorphism-dense subcategory
S in which no two distinct objects are isomorphic.

If we take C = Shv(X), on which the interleaving distance already defines an extended
pseudo-metric, then the above result implies that if d(F,G) = 0, then F ⇠= G and hence in
a skeletal subcategory F = G. This implies that the interleaving distance is an extended
metric when restricted to any skeletal subcategory of Shv(X).

As one can imagine, the space of sheaves viewed as a metric space can be enormously
complicated. Every map f : X ! Rn has an associated sheaf on Rn, simply by con-
sidering the pushforward of the constant sheaf. This includes every possible subspace
Y ⇢ Rn with the pushforward of the constant sheaf along this inclusion serving as a
sort of “indicator function” on it. The interleaving distance would give us one notion of
distance between all these possible subspaces. In this case, there is a ready comparison
to be made with the Gromov-Hausdorff distance between metric spaces, which is more
refined than the interleaving distance. However, the interleaving distance also gives a
distance between information on top of a metric space, where information is encoded via
a sheaf.

15.3 the space of constructible sheaves over R

In this section we will give an explicit description of the space of constructible/cellular
sheaves on R with the interleaving distance as a metric. It turns out that one can use the
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indecomposable sheaves to give a set of “coordinates” on this space. It will turn out that
the space resembles a disjoint union of configuration spaces, where there the components
are divvied up by global sections, i.e. H0. A comparison to McDuff’s construction of the
tangent space use a configuration space of points, where points can disappear, is made.

First we recall the definition of constructible sheaf pertinent to this section. Because
there are competing, more general notions of a constructible sheaf, we will use slightly
different terminology.

Definition 15.3.1. Let Shvd(R) denote the category of definable sheaves over the real
line R, equipped with the usual Euclidean topology. Specifically, a sheaf F will be re-
garded as a contravariant functor from the open set category with the necessary gluing
properties. Such a sheaf F is definable if R can be written as the finite union of open
intervals and points

R = (-1,a0)[ {a0}[ · · · (ai,ai+1) · · ·[ {an}[ (an,1)

such that when restricted to each interval the sheaf is locally constant. We do not assume
that every sheaf is constructible with respect to the same set of intervals.

We will find it convenient to work with a subcategory of this category given by the
definable sheaves with finite support, Shvd,f(X), where the sheaf must restrict to zero on
the two half-open intervals including ±1.

As already established in this thesis, such a sheaf is completely described via a zig-zag
of vector spaces and linear maps

F(a0) F(x0)! F(a1) F(x1)! · · · F(xn)! F(an)

where we have abbreviated the intervals and points by using a’s and x’s along with
subscripts appropriately.

By Gabriel’s theorem, we know that such a diagram amounts to a representation of
an An-type quiver and can be decomposed into finitely many indecomposable represen-
tations. These indecomposables, in view of the cell structure, can be regarded as one of
the following sheaves:

• k[x
i

,x
j

] — the constant sheaf on the closed interval [xi, xj]

• k(x
i

,x
j

) — the constant sheaf on the open interval (xi, xj)

• k[x
i

,x
j

) — the constant sheaf on the half-open interval [xi, xj)

• k(x
i

,x
j

] — the constant sheaf on the half-open interval (xi, xj]

• kR — the constant sheaf supported on the whole real line R
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• Sx — the skyscraper sheaf concentrated on the vertex x

The skyscraper sheaf, Sx, is just a special instance of the constant sheaf on a closed
interval [xi, xj] where xi = xj. As such, we will not always distinguish the skyscraper
sheaf from the constant sheaf on the closed interval. Similarly, one can view the constant
sheaf on R, kR, as a degenerate version of the open interval.

To keep the notation clean and free ourselves from a particular declaration of cell
structure on the real line, we will speak of the four indecomposable sheaves on the real
line:

k[b,d] k(b,d) k[b,d) k(b,d]

Remark 15.3.2. The constant sheaf, kR, and any of the others where b or d is ±1 are
excluded from the category of definable sheaves with finite support.

In the following sections it will be paramount to understand when there is and isn’t a
non-zero map of sheaves between these four types.

Proposition 15.3.3 (Dévissage for 1D Indecomposable Sheaves). We have the following
explicit characterizations for the space of sheaf morphisms:

• For closed intervals I1 = [b1,d1] and I2 = [b2,d2] we have

HomShv(kI
1

,kI
2

) =

8
<

:
k if I2 ✓ I1,

0 o.w.

• For open intervals I1 = (b1,d1) and I2 = (b2,d2) we have

HomShv(kI
1

,kI
2

) =

8
<

:
k if I1 ✓ I2,

0 o.w.

• For half open intervals of the form In = [bn,dn) we have

HomShv(kI
1

,kI
2

) =

8
<

:
k if b1 6 b2 and b2 < d1 6 d2,

0 o.w.

• For half open intervals of the form In = (bn,dn] we have

HomShv(kI
1

,kI
2

) =

8
<

:
k if b2 6 b1 and b1 < d2 6 d1,

0 o.w.
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• For a closed interval I1 = [b1,d1] and any non-compact interval I2

HomShv(kI
1

,kI
2

) = 0

Proof. The calculations all follow from considering the behavior of a cellular sheaf map
near the endpoints of the above indecomposables. Specifically, in a small enough neigh-
borhood of any point in the real line, an indecomposable cellular sheaf has one of the
following three forms, possibly after reflection.

M = 0 k! k

U = k k! k

H = k 0! 0

Clearly there are non-zero natural transformations H ) U ) M, but every natural
transformation M) U) H must be zero.

Remark 15.3.4 (Dévissage for Constructible Sheaves). In David Nadler’s beautiful appli-
cation of constructible sheaves to the study of the Fukaya category [Nad11], he refers to
the diagram

Shv(V)
j!

##

j⇤
;;

Shv(X)j!'j⇤oo

i⇤

""

i!
;;

Shv(Y)i!'i⇤oo

as the “dévissage pattern for constructible sheaves” — an ode to Grothendieck’s method
for studying coherent sheaves. Here j : V ! X is the inclusion of an open set and
i : Y := X-V ! X is the inclusion of the closed complement. Here the categories Shv(-)
refer to the full differential graded category of constructible complexes of sheaves, H0 of
which is the usual derived category.

15.3.1 Interleavings and Dynamics on Indecomposable Sheaves

Since indecomposable sheaves are the underlying elements that build up a sheaf, we in-
vestigate the behavior of each of these sheaves under epsilon-thickening. We summarize
the result of each of these calculations below:

• If F = k[b,d] and ✏ > 0, then eF✏ = k[b-✏,d+✏].

• If F = k(b,d) and 0 6 ✏ < d- b, then eF✏ = k(b+✏,d-✏). If d- b 6 ✏, then eF✏ = 0.
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• If F = k[b,d) and ✏ > 0, then eF✏ = k[b-✏,d-✏].

• If F = k(b,d] and ✏ > 0, then eF✏ = k[b+✏,d+✏].

With these calculations in hand, we can then discuss distance between these sheaves.

• The sheaf k[b,d] is interleaving distance r = (d- b)/2 from the skyscraper sheaf Sm
where m = (d+b)/2 — the midpoint — and infinite distance from any of the other
three types of indecomposables, as well as the zero sheaf.

• The sheaf k(b,d) is interleaving distance r = (d- b)/2 from the zero sheaf 0.

• The sheaves k[b,d) and k(b.d] are interleaving distance r = (d- b)/2 from the zero
sheaf 0.

We now give the supporting arguments for these calculations.

Proposition 15.3.5. If F = k[b,d] and ✏ > 0, then eF✏ = k[b-✏,d+✏].

Proof. To construct eF✏ it suffices to consider the stalks of the thickened pre-sheaf. It
suffices to consider the extreme points. Consider the point x = b - ✏, then any ball
B(x, r) has the property that [b,d] \ B(x, r)✏ = [b,b + r) 6= ;. Since F is defined as
the pushforward of the constant sheaf along j : X = [b,d] ,! R, then F✏(B(x, r)) =
kX([b,b+ r)) = k. This proves that Fx ⇠= k.

Proposition 15.3.6. If F = k(b,d) and 0 6 ✏ < d- b, then eF✏ = k(b+✏,d-✏). If d- b 6 ✏,
then eF✏ = 0.

Proof. If j : W = (b,d) ,! R denotes the inclusion of the open interval, then we can
identify F = j!kW . Here j! denotes the pushforward with compact supports functor. For
the inclusion of a locally closed subspace W into a general topological space X [Ive86]
provides a precise description. For a sheaf F on W the sheaf j!F has sections on an open
set U given by

�(U, j!F) := {s 2 �(W \U, F) | supp(s) closed rel.U}

The support of a section is the set of points where a section has non-vanishing stalks.
For an open set U ⇢ R, we can describe the sheaf pertinent to us even more explicitly:

j!kW(U) is non-zero if and only if there is a closed set Y such that U ⇢ Y ⇢W — we say
that U is completely contained in W. Note that W = (b,d) is not completely contained
in itself, so in particular (b,d) is assigned the zero vector space by j!kW .

Consequently, any point x within distance ✏ of the boundary of (b,d) will fail to
possess a ball B(x, r) such that B(x, r)✏ is completely contained in (b,d). Thus we say
that (b,d) is “eroded” by distance ✏.
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Proposition 15.3.7. If F = k[b,d) and ✏ > 0, then eF✏ = k[b-✏,d-✏].

Proof. This follows by considering each of the above arguments separately about each
endpoint.

Because the other case is obviously symmetric, we omit a separate argument.
An extremely important observation that distinguishes interleavings of sheaves from

the usual context of an interleavings of persistence modules [BL13] is that the sheaf k[b,d]
is not interleaved with the zero sheaf. This follows from the fact that the space of global
sections is preserved by thickening.

15.3.2 Coordinates for the Category of Sheaves

We can now use the decomposition theorem for constructible sheaves over the real line
to give explicit coordinates for each isomorphism class of a definable sheaf with finite
support.

Let H = {(x,y) 2 R2 |y > 0} denote the closed upper half plane. To each of the four
indecomposable sheaves with finite support — k[b,d], k(b,d), k[b,d), and k(b,d] — we can
associate a point in H as follows:

I (x,y) = (m(I), r(I)) := (
b+ d

2
,
d- b

2
)

Here I is a stand-in for any of the four types of indecomposable sheaves. The variable
names m and r are meant to connote the midpoint and the radius, respectively, of the
underlying bar in the “barcode”. One can then associate to any definable sheaf F with
finite support the following coordinates

F ⇠=
nM

k=1

kI
k

 {(m(I1), r(I1)), · · · , (m(In), r(In))} 2Hn
1 tHn

2 tHn
3 tHn

4

where n1,n2,n3,n4 refers to the number of closed, open, half-open on the right and half-
open on the left indecomposables occurring in the decomposition for F, respectively. Of
course, n = n1 +n+ 2+n3 +n4.

As presented, the space has too many points for the simple reason that the line r = 0
in H must be identified with the zero sheaf for the non-closed indecomposable types.
To capture the full category of sheaves we must append a distinguished basepoint ? to
represent the zero sheaf, quotient the upper half plane so as to identify {r = 0} ⇠ {?} and
then form a few infinite symmetric products. The first part is simple. We define

Z := (H t {?})/ ⇠ where (m, r) ⇠ ? iff r = 0.
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The next construction begins by observing that Z is naturally a pointed space, where ?
serves as the distinguished basepoint. To every pointed space we can associate a new
space called the infinite symmetric product.

Definition 15.3.8. Recall that the n-fold symmetric product of X, denoted SPn(X), is
given by forming the n-fold Cartesian product and quotienting out by the action of the
symmetric group, i.e. SPn(X) := Xn/⌃n.

Let Z be a pointed topological space, whose distinguished point is ?. There is a system
of embeddings Zn ,! Zn+1 giuven by sending any point

(z1, . . . , zn) 7! (z1, . . . , zn+1, ?).

This embedding descends to an embedding SPn(Z) ,! SPn+1(Z), which forms a directed
system of spaces. The infinite symmetric product SP(Z) is the direct limit of this system,
i.e.

SP(Z) = lim�!
n>0

SPn(Z).

We can now state a theorem.

Theorem 15.3.9. Isomorphism classes of Shvd,f(R) are in bijective correspondence with
points in the following space:

B :=
G

n>0

SPn(H)⇥
 

SP(Z)
_

?

SP(Z)
_

?

SP(Z)

!

Remark 15.3.10. If one could show that the topology induced by the interleaving distance
made H and Z into cell complexes, then the Dold-Thom theorem would tell us the
singular homology of the space of definable sheaves on the real line is isomorphic to a
countably infinite number of copies of Z in degree zero and zero in all higher degrees.

It remains to be seen what geometry is induced on B by pulling back the inter-
leaving distance. Conjecturally, this should be accomplished by the bottleneck dis-
tance [CCSG+

09, BL13], with the stipulation that only points in SP(Z) can be matched
with zero.

15.3.3 Towards a Bottleneck Distance for Sheaves

We now investigate simpler descriptions of the interleaving distance for definable
sheaves with finite support on the real line. Our goal is to establish a connection
between the interleaving distance for sheaves and the bottleneck distance, which we
now define.
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Definition 15.3.11 (The Bottleneck Distance). Let �+ := {(x,y) 2 R2|x 6 y} be equipped
with the sup norm

d1(p,p 0) = sup{|x1 - x2|, |y1 - y2|}

A multiset D in �+ is a subset |D| of �+ equipped with a multiplicity function µ : |D|!
N. Any multiset can be considered as a set via disjoint unions

D =
[

p2|D|

µ(p)a

i=1

{p}.

A multi-bijection m : D! D 0 is a bijection between the underlying sets, where if µ(p) =
k, then the underlying set has k elements corresponding to p. The bottleneck distance
is a distance between multisets defined by the formula

dB(D,D 0) := inf
m

sup
p2D

d1(p,p 0).

In usual sub-level set persistence, the multisets D consist of the diagonal � = {(x, x)},
equipped with infinite multiplicity, and the points (b,d) corresponding to the interval
modules k[b,d) making up the interval decomposition of theorem 6.3.3. The stipulation
that the diagonal has infinite multiplicity reflects the fact that for half-open intervals, the
module can be interleaved with zero. For sheaves, the obstruction by global sections
result implies that the number of points corresponding to indecomposables k[b,d] is an
invariant of the multi-set — infinite multiplicity of the diagonal cannot be used there.
Nevertheless, we can describe the geometry there in our choice of coordinates.

Lemma 15.3.12. Suppose F = k[m
1

-r
1

,m
1

+r
1

] and G = k[m
2

-r
2

,m
2

+r
2

] are two indecompos-
able sheaves supported over closed intervals, then the interleaving distance for F and G
is their distance in a taxicab metric on H, i.e.

d(k[m
1

-r
1

,m
1

+r
1

],k[m
2

-r
2

,m
2

+r
2

]) = |m1 -m2|+ |r1 - r2|.

Remark 15.3.13. If we write [m1 - r1,m1 + r1] =: [b1,d1] and [m2 - r2,m2 + r2] =: [b2,d2]
then the taxicab metric specializes to a sup-norm on the space {(b,d) 2 R2 |b 6 d}, that
is to say

|m1 -m2|+ |r1 - r2| = sup{|b1 - b2|, |d1 - d2|},

which is a special instance of the bottleneck distance on persistence diagrams.

Proof. Without loss of generality we can assume that m1 6 m2. We know that there can
only be a non-zero map from F✏ ! G if [m2 - r2,m2 + r2] ⇢ [m1 - r1 - ✏,m1 + r1 + ✏],
i.e. if ✏ > (m2 -m1) + (r2 - r1). Similarly, there is a non-zero map G✏ ! F only if
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✏ > (m2 -m1) + (r1 - r2). Since in order for a non-zero interleaving to exist both maps
must be non-zero, we conclude that

✏ = sup{(m2 -m1) + (r2 - r1), (m2 -m1) + (r1 - r2)} = m2 -m1 + |r1 - r2|.

This proves that there is a non-zero interleaving for this value of ✏. However, the inter-
leaving distance is the infimum over all such ✏. However, for any smaller ✏ one of the
maps '✏ or  ✏ must be zero. However, global sections obstructs such a pair of maps
from defining an interleaving, since for every ✏ the maps

⌘F2✏ : F
2✏(X)! F(X) and ⌘G2✏ : G

2✏(X)! G(X)

are non-zero. They are, in fact, the identity map id : k! k.

The situation for constant sheaves supported on half-open intervals or the open inter-
val is more complicated since they have no global sections and can be interleaved with
the zero sheaf.

Lemma 15.3.14. Suppose F and G are each interleaved with the zero sheaf, i.e.
d(F, 0),d(G, 0) < 1. Then the interleaving distance between F and G is bounded
above by the greater of the two distances from zero,

d(F,G) 6 sup{d(F, 0),d(G, 0)}.

Proof. Choose any ✏ > sup{d(F, 0),d(G, 0)}, then the zero maps define an ✏ interleaving,
factoring through zero, between F ang G. Since the interleaving distance is the infimum,
the inequality follows.

We can use the above lemma to establish what the interleaving distance between pairs
of sheaves of the other three types looks like.

Lemma 15.3.15. Let F = k[m
1

-r
1

,m
1

+r
1

) and G = k[m
2

-r
2

,m
2

+r
2

) be indecomposable
sheaves supported on half-open intervals, then

d(k[m
1

-r
1

,m
1

+r
1

),k[m
2

-r
2

,m
2

+r
2

)) = inf{max(r1, r2), |m1 -m2|+ |r1 - r2|}

Proof. Without loss of generality, we assume that F = k[-R,R) and G = k[m-r,m+r) where
m > 0. This can be done since the ✏-thickening operation simply translates sheaves of
this form to the left by ✏. In view of lemma 15.3.14 it suffices to consider the possible
values for m and r such that G✏ admits a non-zero map to F. By proposition 15.3.3 we
can determine precisely what inequalities ✏ must satisfy.
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First we assume that r 6 R. In this case, the inequalities are

-r- R 6 m- ✏ 6 r- R and R- r 6 m+ ✏ < R+ r.

The first set of inequalities bounds when G✏ ! F can be non-zero and the second set of
inequalities bounds when F✏ ! G can be non-zero. The smallest such ✏ that satisfies the
first set is ✏ = m+ R- r, which only satisfies the second set if m < R. For these values
of m and r, there is the smallest non-zero interleaving, so the distance is

d(F,G) = m+ R- r.

Similarly for r > R, ✏ = m+ r- R is the smallest possible value for G✏ ! F to be non-
zero. Requiring F✏ ! G to be non-zero as well implies that m 6 R and for these values
of m and r the distance is

d(F,G) = m+ r- R.

Consequently, wherever a non-zero interleaving is possible, the smallest such value is
given in the desired taxicab form m + |r - R|. Now we can apply lemma 15.3.14 to
determine whether the non-zero interleavings are the smallest possible. We split into
two cases. Suppose r 6 R, then m+ R- r 6 R — the largest distance from zero — when
m 6 r, precisely where we determined a non-zero interleaving exists. Similarly if R 6 r,
then we have that m+ r- R 6 r precisely if m 6 R.

With this evidence in hand, we believe a version of the isometry theorem [Les12, BS,
BL13] should hold for definable sheaves with finite support over the real line. However,
we must delay this for another time.
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inclusion of a point, 89
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of a cellular sheaf, 96
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over a cover, 25
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behavior under refinement, 34

cellular, 68
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Borel-Moore homology of, 97
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derived equivalence with sheaves,
235

height function on torus, 69

homology of, 98

homology via barcodes, 138
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constructible, 189

from a definable map, 224Entr(X), 223
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approaches, 43Set, 45

universal property as a right
adjoint, 45

definition of, 22

elementary injective on a poset, 114
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locally constant cosheaf, 57

representation of ⇡1(X), 57

Mayer-Vietoris, 31
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on closed sets, 78, 86

push-pull adjunctions, 90

pushforward, 80, 83
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three perspectives on, 18
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Db(A) derived category, 121
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motivation, 75
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skeletal subcategory, 8

splitting lemma, 104

stability, 258

for derived interleavings, 262

stacks, 68

stalk, 36, 39, 40

star, 73

strata, 190

closed union, has regular
neighborhood, 205

stratified map
determines constructible cosheaves,

224

Thom mapping, 207, 209

Whitney, 196

stratified space
general properties of, 195

Thom-Mather, 203

Whitney, 194

stratified submersion, 196

stratified vector field, 207

subdivision, 83

of a cellular sheaf, 83

tame topology, 198

tensoring sheaves with cosheaves, 240

terminal object, 6

Thom’s first isotopy lemma, 196

van Kampen theorem, 58Entr(X), 216

Verdier duality, 238

Vopenka’s principle, 45

291


	Acknowledgements
	Abstract
	Contents
	List of Figures
	Preface
	A Mathematical Introduction
	1 A Primer on Category Theory
	1.1 Categories
	1.2 Diagrams and Representations
	1.3 Cones and Limits
	1.4 Co-Cones and Colimits
	1.5 Adjunctions

	2 The Theory of Sheaves and Cosheaves
	2.1 The General Definition
	2.2 Limits and Colimits over Covers: a Structure Theorem
	2.2.1 Rephrased as Equalizers or Co-equalizers
	2.2.2 Rephrased as Exactness

	2.3 Čech Homology and Cosheaves
	2.4 Refinement of Covers
	2.5 Generalities on Sheaves and Cosheaves
	2.5.1 Pre-sheaves and their Associated Sheaves
	2.5.2 Grothendieck's Operations
	2.5.3 Failures to Commute
	2.5.4 The Existence of Cosheafification


	3 Preliminary Examples
	3.1 Sheaves Model Sections
	3.2 Local Systems: A Bridge Between Sheaves and Cosheaves
	3.3 Cosheaves Model Topology
	3.4 Taming of the Sheaf... and Cosheaf


	Linear Algebra over Cell Complexes
	4 Cellular Sheaves and Cosheaves
	4.1 Cell Complexes and the Face-Relation Poset
	4.2 Partially Ordered Sets: Finite Spaces and Functors
	4.2.1 The Alexandrov Topology
	4.2.2 Functors on Posets


	5 Functors Associated to Maps
	5.1 Maps of Posets and Associated Functors
	5.1.1 Pullback or Inverse Image
	5.1.2 Application: Subdivision
	5.1.3 Pushforward or Direct Image
	5.1.4 f, Pushforwards and Closed Sets
	5.1.5 f!: Pushforward with Compact Supports on Cell Complexes

	5.2 Calculated Examples
	5.2.1 Projection to a point
	5.2.2 Inclusion into a Closed Interval
	5.2.3 Map to a Circle

	5.3 The Push-Pull Adjunctions

	6 Homology and Cohomology
	6.1 Chain Complexes and Homology
	6.1.1 The Combinatorics of Cell Complexes and Homology

	6.2 Computational Sheaf Cohomology and Cosheaf Homology
	6.2.1 Cellular Sheaf Cohomology
	6.2.2 Cellular Cosheaf Homology

	6.3 Explaining Homology and Cohomology via Indecomposables
	6.3.1 Persistence Modules and Barcodes
	6.3.2 Representation Theory of Categories and the Abelian Structure
	6.3.3 Quiver Representations and Gabriel's Theorem
	6.3.4 A Remark on Quivers and Perverse Sheaves


	7 The Derived Perspective
	7.1 Taylor Series for Sheaves
	7.1.1 Elementary Injectives and Projectives
	7.1.2 Injective and Projective Resolutions

	7.2 The Derived Category and Homotopy Theory of Chain Complexes
	7.3 The Derived Definition of Cosheaf Homology and Sheaf Cohomology
	7.3.1 Borel-Moore Cosheaf Homology
	7.3.2 Invariance under Subdivision

	7.4 Sheaf Homology and Cosheaf Cohomology
	7.4.1 Invariance under Subdivision



	Applications to Science and Engineering
	8 Topological Data Analysis
	8.1 Point Clouds and Persistent Homology
	8.1.1 Level Set and Zigzag Persistence

	8.2 Approaching Persistence with Sheaves and Cosheaves
	8.2.1 Cellular Maps and Absolute Homology Cosheaves
	8.2.2 Local-to-Global Computations via Cellular Sheaves
	8.2.3 Level Set Persistence Determines Sub-level set Persistence

	8.3 Multidimensional Persistence
	8.3.1 Generalized Barcodes


	9 Network Coding and Routing Sheaves
	9.1 Duality and Routing Sheaves
	9.2 Counting Paths Cohomologically, or Failures thereof
	9.3 Network Coding Sheaf Homology

	10 Sheaves and Cosheaves in Sensor Networks
	10.1 A Brief Introduction to Sensors
	10.2 The Coverage Problem: Static and Mobile
	10.3 Intruders and Barcodes
	10.3.1 Tracking the Topology over Time
	10.3.2 Linearizing the Sheaf of Sections

	10.4 Multi-Modal Sensing
	10.4.1 A Deeper Look at Sensing
	10.4.2 Indecomposables, Evasion Sets, Generalized Barcodes



	Novel Mathematical Contributions
	11 The Definable Entrance Path Category
	11.1 Stratification Theory and Tame Topology
	11.1.1 Whitney Stratified Spaces
	11.1.2 Stratified Maps and a Counterexample
	11.1.3 O-minimal Structures
	11.1.4 Thom-Mather Stratifications
	11.1.5 Thom Mappings
	11.1.6 Stratified Maps to the Real Line

	11.2 Representations of the Entrance Path Category
	11.2.1 Homotopy Links
	11.2.2 Van Kampen Theorem for Entrance Paths
	11.2.3 The Equivalence
	11.2.4 Representations from Stratified Maps


	12 Duality: Exchange of Sheaves and Cosheaves
	12.1 Taking Closures and Classical Dualities Re-Obtained
	12.2 Derived Equivalence of Sheaves and Cosheaves
	12.2.1 Linear Duality
	12.2.2 Verdier Dual Anti-Involution


	13 Cosheaves as Valuations on Sheaves
	13.1 Left and Right Modules and Tensor Products
	13.2 Compactly-Supported Cohomology
	13.3 Sheaf Homology and Future Directions

	14 Graded Descriptions of the Derived Category
	14.1 The Derived Category for Complexes of Vector Spaces
	14.2 Derived Complexes of Cellular Sheaves
	14.2.1 Counterexample to the Naïve Approach
	14.2.2 Using the Calculus of Fractions Formulation
	14.2.3 The Equivalence


	15 A Metric on the Category of Sheaves
	15.1 Interleavings for Pre-Sheaves
	15.1.1 Easy Stability
	15.1.2 Global Sections Obstruct Interleavings

	15.2 Interleavings for Sheaves
	15.2.1 The Effect of Sheafification
	15.2.2 Thickening Global Sections
	15.2.3 Metric on Sheaves

	15.3 The Space of Constructible Sheaves over R
	15.3.1 Interleavings and Dynamics on Indecomposable Sheaves
	15.3.2 Coordinates for the Category of Sheaves
	15.3.3 Towards a Bottleneck Distance for Sheaves


	Bibliography
	Index


